

NICER Aesthetic Image Enhancement with Humans in the Loop

Michael Fischer, Konstantin Kobs, and Andreas Hotho Julius-Maximilians-Universität Würzburg *m.fischer@informatik.uni-wuerzburg.de*

Contribution No. 20186

Michael Fischer

2014 - 2017: B.Sc. Aerospace Information Technology, JMU Würzburg, Germany.
2018 - 2020: M.Sc. Computer Science, JMU Würzburg, Germany.
Since 2020: Ph.D. Student, University College London, UK.

My research interests include computer graphics, artificial intelligence, machine learning, its intersections with human perception and human-computer interaction.

NICER - Aesthetic Image Enhancement with Humans in the Loop

- Number of images taken increases steadily
- Casual users do neither have time, patience, nor skills to edit all images

 \rightarrow Automate the enhancement

- There exists automated enhancement software
- Often, enhancement routine is a "black box"
- Users are left with little to no control over the enhancement outcome

 \rightarrow Let the users influence the enhancement. Incorporate their preferences into the process.

Incorporating user preferences into enhancement...

Incorporating user preferences into enhancement...

Two neural networks as main components:

- Image Manipulator
 - Context Aggregation Network (CAN)
 - 8 photographic & artistic filters (e.g., brightness, contrast)
- Quality Assessor
 - Neural Image Assessment (NIMA)
 - CNN feature extractor, regresses to a "beauty score"

• Iterative optimization loop and perceptual loss allow for interactive back-and-forth:

User influence ...

- **before enhancement**: set initial filter intensities (e.g. high contrast)
- during enhancement: control / change filter parameters to guide the next optimization step
- after enhancement: outcome is not fixed, parameters can be manipulated further

- With the iterative approach, a user can interact with NICER to guide the optimization process
- Without user interaction, NICER enhances the image automatically, but might not exactly match the user's imagined outcome

NICER's automatic enhancement

- User study (51 subjects) to compare preferences about different image edits
- Rank NICER's output vs. original image and image edit with random parameters

First Experiment: Results

- For 93% of all images, our participants prefer the enhanced image over the random baseline
- 53.7% of images are preferred over the original, which is a statistically significant change (1% confidence interval)
- High variance in ratings shows that perception of beauty depends heavily on subject
 - \rightarrow Incorporate the user in the enhancement process

Second Experiment

NICER's enhancement with humans in the loop

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

- Letting users choose interaction routes based on their personal likings
- Do users like the output of the interactive enhancement process better?

A sample optimization process where the user (red) interacts with NICER (blue) to create a set of custom enhancements that are tailored to their liking.

- 97.9% of our participants: enhancements are better than the original image
- 68.1% of our participants:

prefer enhancement routes that include at least one of NICER's automatic steps

Conclusion:

- combining user interaction with automatic, intelligent enhancement is a valid approach
- further research can be conducted on the influence of different networks and training data on NICER's performance

Our contributions:

- NICER, a novel way of incorporating users' aesthetic preferences into image enhancement
- a publicly available repository, containing our source code and trained models.

Contribution No. 20186 - "NICER - Aesthetic Image Enhancement with Humans in the Loop"

Github Project Page: <u>https://github.com/mr-Mojo/NICER</u>

Contact Author: Michael Fischer, <u>m.fischer@informatik.uni-wuerzburg.de</u>