Accelerating Integration and Prototyping of IP for Mobile and AI SoCs

Prof. Dr. Antonio J. Salazar E.
September 26th, 2019
Synopsys Contact Information

Synopsys’ Website: https://www.synopsys.com/

- DesignWare IP Subsystems
- DesignWare IP Prototyping Kits
- FPGA Prototyping Methodology Manual
- Synopsys’ New HAPS-80 FPGA-Based Prototyping Solution

Articles

- Adaptability – Key to Fast Prototyping
- High-Quality Automotive IC Design with IP Subsystems
- Challenges of USB 3.1 IP Certification
- Faster Iteration Flows to Accelerate Hardware/Software Development
- IP Subsystems: The Next Frontier for IP Integration
- Accelerate Time-to-Market with Interface IP Subsystems
- Adapt, Port, and Integrate Quickly—Prototyping the Right Way

For Additional Information or Contact please use this link
Synopsys Today: From Silicon to Software

FY18 Revenue: ~$3.121B
Employees: >13,854
Patents: 3,201
Offices: 116

#1 electronic design automation tools & services
Broadest IP portfolio and #1 interface, analog, embedded memories & physical IP
‘Leader’ in Gartner’s Magic Quadrant for application security testing
Synopsys: Silicon to Software

Software
- Application security testing & quality
- Leader in Gartner’s Magic Quadrant

Verification
- Fastest engines & unified platform
- HW/SW verification & early SW bring-up

IP
- Broadest portfolio of silicon-proven IP
- #1 interface, analog, embedded mem. & phys. IP

Design
- Digital & custom AMS platforms
- Best quality of results & highest productivity

Silicon
- TCAD, lithography tools & yield optimization
- Down to 5nm & below
Agenda

- What is driving today’s technological market
- The Role of Protocols and Standards as Innovation Accelerators
- Accelerating Integration – The Role of Subsystems
- FPGA Prototyping Today
What is driving today’s technological market
AI requirements and considerations influence
What Changed the AI World

The moment in time that spurred massive AI Acceleration investment

- **1986** - Geoffrey Hinton co-authored a paper on backpropagation in neural networks
- **2010** – Nvidia GeForce GTX 580 launched
- **2012** – AlexNet
 - Designed by Alex Krizhevsky
 - Published with Ilya Sutskever and Krizhevsky’s PhD advisor Geoffrey Hinton
 - Running on a dual Nvidia GeForce GTX 580 GPU
 - Achieved 15.3% error at ImageNet Challenge
- **2015** – ResNet surpassed human error

All “Deep” learning Graphs are CNN (convolutional neural networks)

ImageNet Large Scale Visual Recognition Challenge
Artificial Intelligence Market Growth

Chipsets Across all Markets will Include Deep Learning Capabilities

- **Mobile** - All Premier Smartphones will integrate AI Processing Capabilities by 2021
- **Data Center** - More than 50% of enterprises will deploy AI accelerators in their server infrastructure by 2022
- **Auto** - Volume production of autonomous vehicles will begin in 2020
- **IoT** - More than 20% of IoT devices will have AI Processing Capabilities by 2022

Source: Gartner (January 2018)
Deep Learning SoC Challenges

Unique Requirements for Processing, Memory, Connectivity

- **Specialized Processing**
 - Heterogeneous processing (scalar, vector, neural network)
 - Massively parallel, matrix multiplication (neural network)
 - Model compression via pruning and quantization – (Increases irregular compute intensity and memory accesses)

- **Memory Performance**
 - Capacity and bandwidth constraints
 - Cache coherency requirements
 - Advanced processes maximize on-chip SRAM to reduce data movement

- **Real-Time Connectivity**
 - Reliable and configurable connectivity to AI data centers
 - Real-time interface to sensors, images, audio, cloud, and more
 - Reduced energy via power management features and FinFET technologies

Innovation in compression, lower power, less memory is required
SoC Security Design Considerations

Securing all Stages of Operation

Trusted Execution Environment

- Continuously check for threats
- Secure communications

- Validate device identity
- Validate software before execution

- Prevent theft of stored code and data
- Protect IP

Powered Off

Powered Up

Running Operation
The Role of Protocols and Standards as Innovation Accelerators

Interoperability as the corner stone for ubiquitous innovation
SoC Architecture Design

Ever growing number of considerations and challenges

• **Considerations:**
 – CPU, DSP, ASIP capabilities
 – Establish low power strategy
 – Design of key blocks (RTL, ASIP)
 – PPA (Power, Performance, Area) estimation
 – Memory architecture, bus bandwidth/latencies
 – Safety/Security considerations
 – Ensuring proper interoperability/interconnectivity
 – Verification and FPGA-based prototyping

• **How to get SoC architecture right from the start**
 – Gain confidence that PPA targets can be met without overdesign
 – Minimize course corrections to hit schedule targets
 – Hardware/Software Co-design
 – Managing TTM pressures
SoC Designs are Becoming More Complex and Costly

Must get the design right the first time

Source: IBS, August 2015
Understanding an IP

Hardware Secure Module

- Pre-built security module with a unique ID that cannot be tampered with
- Provides robust security functionality
- Extends security to other internal and external entities in an SoC
- Pre-defined security perimeter
 - Reduces security knowledge requirements
 - Lowers design risks
 - Accelerates time to market
DesignWare IP for AI
Building Innovative Deep Learning SoC Designs

- ARC & EV Processors, ASIP Designer, and Foundation Cores for specialized processing
- DDR, HBM2, CCIX, Embedded Memories and Logic Libraries for optimized memory performance
- Portfolio of silicon-proven interface IP for real-time data connectivity
Accelerating Integration – The Role of Subsystems

Focusing in Added Value and Differentiating factors, instead on the building blocks
Silicon IP Trends: IP Blocks ➔ Subsystems (HW + SW IP)

IP Vendors Help Designers Keep Up With Functional Complexity

Source: Semico, October 2018
IP Subsystems: More than Controller + PHY
Specific to Your Application & SoC

Minimize integration effort, reduce overall development cost, and meet critical project schedules

- **Built by Protocol experts & customized to exact requirements**
 - Incremental deliverables throughout project

- **Comprehensive subsystem level verification**
 - Comprehensive end-to-end suite of tests, reusable at SoC

- **Subsystem analysis**
 - Lint and CDC/RDC checking
 - Timing analysis with SoC-specific technology library

- **Synthesis scripts & comprehensive integration documentation**

- **Optional Extra value: DFT, SRAM integration, BIST**
Comprehensive Testing and Scripts for SoC Integration

Fastest SoC Integration

- Easy & Rapid Integration into SoC environment
- Fully documented
- Direct Support

Documentation
- Functional specification
- Verification plan and programming guidelines
- Implementation guidelines
HDCP used in HDMI RX Applications

- TRNG typically used in rest of system and not included at this level
- HDCP is required for secure content
- Multi-port HDCP for fast switching in multi-port RX applications
MACsec Engine as a In-Line or Look-Aside Accelerator

- Typical implementation
- Low latency
- Can be disabled for non-secure applications or key only data validation

- Some advantages
 - Saves gates in Multi-Port System
 - Easier to implement where MAC and PHY are tightly coupled
Digital Home and IoT Edge SoC Architectures

Digital Home/IoT (Edge)

<table>
<thead>
<tr>
<th>Apps Processors</th>
<th>Deep Learning Processor</th>
<th>Image Signal Processor</th>
<th>LPDDR4</th>
<th>MIPI CSI-2, D-PHY</th>
<th>MIPI CSI-1, D-PHY</th>
<th>PCIe</th>
<th>Bluetooth</th>
<th>HDMI</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio Processor</td>
<td>Sensor Subsystem</td>
<td>USB 3.x</td>
<td>Ethernet TSN</td>
<td>SD/eMMC</td>
<td>Security (eSIM)</td>
<td>SSI</td>
<td>WIFI Baseband</td>
<td>WiFi Radio</td>
<td>Bridge</td>
</tr>
<tr>
<td>Security cameras, digital home, drones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low-End IoT (Edge)

<table>
<thead>
<tr>
<th>ARC EM Processor / Subsystem</th>
<th>Deep Learning Processor</th>
<th>Bluetooth, 802.15.4</th>
<th>MIPI CSI-2/DSI D-PHY</th>
<th>SPI Flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio Processor</td>
<td>Security</td>
<td>USB 2.0</td>
<td>Mobile Storage</td>
<td>Bridge</td>
</tr>
</tbody>
</table>

90-, 55-, 40-nm, next-generation 40-, 22-nm Voice/NLP/NLU, facial detection, human activity activation, audio
CoStart with IP Subsystems Experts

Reduce Design Risk with Architectural Consultation and Design of Subsystem

Reduce Design Risk
- IP & SoC experts configure and customize to your requirements
- Frees your team to work on your product differentiation

Architectural Consultation
- **Rapid Translation of SoC Requirements to Subsystem**
 - Focused on Architecture, Specific Features, Performance, Clocking
- **Deliverable: Functional Specification Document**
 - Configuration
 - IP Subsystem Architecture
 - Clocking/Reset Architecture
 - Additional Custom Blocks

Accelerate Time-to-Market
- First-time-right integration speeds TTM
FPGA Prototyping Today

From the single FPGA board to a scalable every increasing resource/frequency solution
How to Prototype an IP Subsystem

IP Validation basics

Reference SW for IP
Runs Linux OS

Software Development Platform

AXI

FPGA ready IP design

Interface IP PHY

SoC integration logic

HAPS-80 Prototyping System

PHY Board

Interface
Control & Test
DesignWare Controller

AXI slave
AXI master

AXI

SoC integration logic

Runs Linux OS

Control & Test Interface

AXI slave

AXI master

Reference SW for IP

Software Development Platform

AXI

Interface IP PHY

SoC integration logic

HAPS-80 Prototyping System

PHY Board

Interface
Control & Test
DesignWare Controller

AXI slave
AXI master

AXI

Runs Linux OS

Software Development Platform

AXI

Interface IP PHY

SoC integration logic

HAPS-80 Prototyping System

PHY Board

Interface
Control & Test
DesignWare Controller

AXI slave
AXI master

AXI

Runs Linux OS

Software Development Platform

AXI

Interface IP PHY

SoC integration logic

HAPS-80 Prototyping System

PHY Board

Interface
Control & Test
DesignWare Controller

AXI slave
AXI master

AXI

Runs Linux OS

Software Development Platform

AXI

Interface IP PHY

SoC integration logic

HAPS-80 Prototyping System

PHY Board

Interface
Control & Test
DesignWare Controller

AXI slave
AXI master

AXI

Runs Linux OS

Software Development Platform

AXI

Interface IP PHY

SoC integration logic

HAPS-80 Prototyping System

PHY Board

Interface
Control & Test
DesignWare Controller

AXI slave
AXI master

AXI

Runs Linux OS

Software Development Platform

AXI
 Improve IP Prototyping Schedule
 Cult Months from Integration, Prototyping and SW Schedule

Create IP Reference Design
Create Board & PHY Daughter card
Validate Reference Design
Explore IP Configuration
Firmware, driver, bootcode development
Hardware/Software Validation

Validation of HW & SW in concert with the real world

- System validation: Test final product use-cases
 - Full protocol stack
 - Digital (RTL), analog (PHYs), Software

- Goal: Uncover corner case faults
 - Using real world scenarios (IO)
 - Using production software images

- Focus:
 - Software & hardware defects
 - Interoperability issues
 - Performance flaws
Hardware/Software Validation

Typical faults found during system validation

- **Software:**
 - Driver issues abstracted in PHY models
 - Corner case defects in long scenarios (e.g., Protocol flaws)

- **Performance:**
 - Unexpected contention, latencies due to integration of all subsystems
 - Missed real-time requirements discovering SW malfunctions (deadlocks, timeouts)

- **Hardware Interoperability:**
 - Signal integrity
 - Protocol completeness & robustness
 - Specification interpretation

- **System Power Management:**
 - Power-up/down sequence deadlocks

![Diagram of hardware/software validation process](image-url)
Hardware/Software Validation

Validation of HW & SW in concert with the real world

- System validation requires:
 - ASIC RTL
 - Real world interfaces (PHYs)
 - Connected ICs/devices
 - Production software
 - Close to real-time performance
 - System-level observability for failure analysis

- HAPS Prototyping
 - Highest capacity & performance multi-FPGA systems
 - Comprehensive clock infrastructure and SW flow
 - Large portfolio of PHY daughter boards & complete IP kits
 - Widely deployed in the industry for system validation
Hardware/Software Validation

HAPS Prototyping Solution

- ASIC Design (RTL)
- Daughterboards definition/ IP Prototyping Kits
- Create FPGA bitfile(s) with HAPS ProtoCompiler
- HAPS-80 System
- HW debug with ProtoCompiler Debug
- PHY daughterboards IP Prototyping Kits
- Software Debugger
- Interoperability

End to End

HW to SW

360 Camera

SW to SW

Sensor HAL
Camera HAL
Flash HAL

Sensor Hub Driver
DSI Driver
UFS Driver

SoC
Sensor Hub
MIPI CSI Ctrl
uMCTL Ctrl

PCB
DDR Phy
CSI Phy

Interoperability
Hardware/Software Validation

HAPS Prototyping Solution

HAPS-80 System
HapsTrak 3 PHY Daughter boards

Camera

MIPI PHYs

Display

Android
Runtime & Apps

OS Kernel

Hardware Adaptation Layer

SoC

PCB

Sensor
Hub Driver

DSI Driver

UFS Driver

MIPI CSI Ctrl

uMCTL Ctrl

I3C Sensor

CSI PHY

DDR PHY

Interoperability

End to End

SW to SW

360 Camera

HW to HW

HW to SW
IP Prototyping Kits Accelerate Integration

Cuts Months from Integration, Prototyping and SW Schedule

<table>
<thead>
<tr>
<th>Explore IP</th>
<th>Create Board & PHY Daughter card</th>
<th>Create IP Reference Design</th>
<th>Validate Reference Design</th>
<th>Explore IP Configuration</th>
<th>Firmware, driver, bootcode development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminate</td>
<td>Eliminate 10 to 12 weeks</td>
<td></td>
<td></td>
<td></td>
<td>Shift Left!</td>
</tr>
</tbody>
</table>

IP Prototyping Kits’ Schedule Benefit

- Explore IP
- Firmware, driver, bootcode development
Synopsys Provides Solutions

IP Accelerated
- DesignWare IP
- Tuned to Your SoC

Hot Markets
- Automotive, ML, Cloud, 5G, IoT

<table>
<thead>
<tr>
<th>Processors</th>
<th>Security IP</th>
<th>High Speed Data Converters</th>
<th>Logic Libraries/ Embedded Memories</th>
<th>NVM</th>
<th>Process Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV6x, HS, EM</td>
<td>tRoot, HDCP 2.3, Provisioning</td>
<td>3Gbps/6Gbps</td>
<td></td>
<td>OTP, MTP</td>
<td>FinFET (7/5/4nm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Planar (22nm...)</td>
</tr>
<tr>
<td>USB 3.1 Type-C w/DP, USB 3.2, eUSB, USB4</td>
<td>DDR DDR5 (4800), LPDDR5 (6400), HBM2E (3200)</td>
<td>PCI Express PCI Express 5.0, CCIX, CXL, LP PCIe 4.0</td>
<td>Multi-Protocol SerDes 56G/112G</td>
<td>HDMI v2.1TX/RX</td>
<td>MIPI D-PHY 2.1, UFS 3.0, C/D-PHY</td>
</tr>
</tbody>
</table>
Thank You