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Petre
#

« (partially) retired | (mostly) volunteering | enjoying (affordable) traveling

« Past topics: mathematics, VLSI, formal languages, protocol V&V, real-time
embedded systems, nomadic code, active routing, software arch, (AT&T) IMS,
(Cisco) IOS, Fault Mgr, Performance Mgr, ...Data, Learning,....

« Academics: U de Montreal, Concordia U, McGill U | (AT&T) Stanford, (Cisco)
Berkeley, China Space Agency Center - Beijing | Cisco-IBM Coop Dir., AT&T-
Cisco Coop. Dir.

. :ndustrial/research: BNR (Nortel R&D), CRIM (R&D), AT&T, Cisco Systems,
nc.

« Salient: 19 US Cisco patents, (co)supervisor: 38 Master&PhD

« Current hobbies: self-x, systems/apps adaptation, conflicts in decision
policies, crowd-in-the-middle, reflective architectures, new trends in software
development (apps)

« Open: how can a piece of software can realize by itself (or by any other
@Legrbsg]that a copy of that piece was (? illegally) made somewhere [see

« Still learning ...from you!
* Yet, playing: 4 grandkids, my neighbors



Keywords Invasion
#

«  Machine Learning

 Deep Learning (Neuronal Networks, Sandwitch, etc.)

- Data Visualization (Uni-, Multi-variables, Links)

«  Semantic Gap/Semantic Matching

« Ontologies/Taxonomies

*  Prediction/Intuition/Data Analytics/Data Science
 Advanced Artificial Intelligence

 Accelerated Deep Learning/Deep Thinking

« Data Orchestration (open data, data sets, visible/hidden links)

« Brain-Like computing (neuromorphic computing mimics the brain’s
structure)

 Intelligent-Analysis-as-a-Service
. Prediction-as-a-Service
o Data Science



Data and Learning

Artificial Intelligence

&8 [Machine Learning

Natural
Language
Processing
(NLP)
Supervised Unsupervised Reinforcement Deep Learning
Learning Learning Learning [

Planning

credit: https://www.ibm.com/analyticsimachine-learning




BIG | the Vs | 3v, 5v, 7v, 10v, .... ?
#

o VO I ume (length of arecords, # of records) (entity-relationship databases)(datasets) || BIG vs. HUGE

- Va.“ety (types: strings, pictures, voice, etc.) (structured, non-structured)

* Veracity (precision and accuracy of data)

* VelocCity (of change) - .

e Value @sabusinessiservice) IMPACT : E

o Volatility temporary; quick action) ; E

e Vasting resources _
HTCOMPIe gty of data

e V|ab|||ty (are data still useful?)

-inconsistent

Y VISIbIIIty (open, hidden, ..) - noisy
» Validity

(are there still valid/updated data?)
(In context validity)

‘IIIIIIII

filling missing values with estimated values
(e-government datasets) calculated for complete records of the same dataset



Big/Huge Data Visualization
#
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Big Data Clusters

shutterst~ck:

Credit:



Linked Big Data
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exporter
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Wrapper
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RDF Book
Mashup
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== ProDom

PubMed
As of July 2009

credit;: https://neuinfo.org/about/nifblog/521




Linking Open Data datasets
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credit https://en.wikipedia.org/wiki/Linked data#/media/File:LOD Cloud 2014-08.svg




Panelists
#

Moderator
Petre Dini, IARIA, USA

Panelists

» Maaike de Boer, TNO, The Netherlands
Explainable Artificial Intelligence

 Marco La Cascia, University of Palermo, Italia
Deep Learning and the Semantic Gap

« Tsan-Sheng Hsu, Institute of Information Science, Academia Sinica,
Taiwan
Deep Learning and Knowledge underneath the Data | Playing Rules and
“Intelligence"” Learned in Complex Applications

« Hiroshi Ishikawa, Tokyo Metropolitan University, Japan
From Data Science to Science-disciplined Data Analysis

10



Planning
#

e Stage for the panelists
 Open discussion
e Concluding remarks

* Next panel topic | end of Feb, 2020, Lisbon

IARIA
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From data science to science-
disciplined data analysis

Hiroshi Ishikawa
Director, Research center for social big data
Tokyo Metropolitan University
Tokyo, Japan
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Integrated analysis of real world data and
open data, social data
“Ishikawa’s concepts” (Olshannikova et al 2017)

Physical real world Cyber world

Analysis and visualization of relationships

wrt Spatio temporal *semantics
Seismic data 7 N YouQL
/ \ _ :
Weather data gl \\ o 3 fller
X o Integrated analysys \?-_} o
Real world data g 3 |°§ 3 Social data
@ L =]
== =
e S S Social big data ,, S 3
/
\
IC card data N /
i&.com

Use of relationships
Opendata Prediction, recommendation, and problem solution

Latent semantics Explicit semantics

® CEkaterina Olshannikova et al, Conceptualizing Big Social
Data, Journal of big data, Springer, Vol.4, No.3, pp.1-19,

BEBAKFEES e
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Social big data (SBD) in summary

In social big data applications, especially, cases where two or more data sources
including at least one social data source are involved, are more interesting from a
viewpoint of usefulness to businesses.

If more than one data source can be analyzed by relating them to each other, and
by paying attention to the interactions between them, it may be possible to
understand what cannot be understood, by analysis of only either of them.

By collecting those articles and images based on conditions specified with respect
to locations and time intervals and counting them for each grid (i.e., unit location),
probabilities that users post such data at the locations can be basically computed.

By using such probabilities, for example, human activities can be analyzed such as
probabilities of foreigners staying at specific spots or those moving from one spot
to another.

CEPNEY $ <
TOKYO METROPOLITAN UNIVERSITY lui



Reference architecture for social
big data

o Construction of integrated
model for applications
xplanation of
lications by model

1 J'tion and
SBD model is needed , confirmation of

Data individual hypotheses
ecution of
Logzca ayer o . -

appllcatlon spectfic

_-41 ardware %

Real world data Open data Social data
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Requirements of our SBD model

e Description of SBD applications must be as independent from individual
programming languages and frameworks (e.g. Spark and MLI) as possible.

e it is not always possible for all researchers to access the same data and tools
that the authors have used.

* |n other words, by enabling the mapping from description of applications by an
abstract SBD model to individual tools available for the other researchers,
reproducibility [Stidhof 2016] can be realized even if the tools are not the same
with the original one.

* Both data management and data mining must be described in an integrated manner.

* |n SBD applications, a lot of time is spent on development and execution of
data management including preprocessing and postprocessing in addition to
data mining.

e Further, data management and data mining cannot be always separated in a
crisp manner.

e Rather, most SBD applications require hybrid processes mixed with data
management and data mining.

Thomas C. Sudhof, Truth in Science Publishing: A Personal

&4 g3y 85 Perspective PLOS August 26, 2016.
Wy
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Whole processes of SBD applications
In general require explanation

Prepare data How

Analyze Analyze data How, Why

VS22 Visualize result Why
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Necessity of an integrated
framework for explanation

In order for social big data to widely be used, it is necessary to
explain the user the application system.

Both , that is, interpretation of the
analytical model and explanation of individual decisions and

, that is, description of the whole
processes including the data manipulation and the model
construction are required.

From the development experiences of multiple use cases, we
have come to think that both the
in this paper and the
are urgently needed.

HA KFHR R
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A macro explanation is necessary
for the following reasons.

* |In order for social big data applications to be accepted by users, it
is necessary to ensure at least their reliability. Since information
science is one area of science, we should guarantee
reproducibility as science. In other words, it is necessary to
ensure that third parties can prepare and analyze data according
to given explanation and can get the same results.

* In addition, in order for the service to be operatable, it is
necessary for the final user of the service to be convinced of how
the service processes and uses the personal information.

e If the users can be convinced of the description of way of using
the personal information, the progress of data portability can be
advanced based on the EU's GDPR law on personal information
protection and Japan-based information bank to promote the use
of personal information.

B KFRRE

TOKYO METROPOLITAN UNIVERSITY




A micro explanation is necessary
for the following reasons.

* In order for analysts of social big data and field experts using
the data to accept decisions made by the constructed model,
it is assumed that they must understand the structure,
actions and grounds of the model and are satisfied with them
as well.

e Up to now, the authors have been involved in the
development of a wide range of social big data use cases
ranging from tourism, disaster prevention to lunar and
planetary science.

* In the course of these processes, from the users of the use
cases, we have often received questions as to what kind of
data are processed, what kind of model are created as the
core of analysis, and furthermore, what are the grounds for
the decisions.

4 g By
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TNO (550
WHY EXPLAINABLE Al?

> With the recent advances in deep learning, it becomes more and more important to create
transparency in order to gain trust in the Al systems.

» This can be done by
} Opening up black box models
» Using model-agnostic algorithms
> And many more methods

Explainable Al



m innovation
— for life —

We should have explainability at all cost, even if it implies lower
performance

The human in the loop is the key to explainable Al

Using model agnostic algorithms is better than creating new deep
learning algorithms that are more transparent

Explainable Al
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Zogg g1

Deep learning and the
semantic gap

Marco La Cascia

Universita degli Studi di Palermo

Dipartimento di Ingegneria
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Data, information and knowledge

e “We are drowning in information but starved for knowledge”
[Naisbitt 1982] John Naisbitt. Megatrends. Warner Books, Inc. (1982)

* Today, we are drowning in data and starved for information.
Lot of data... but how much of that data will actually be useful?

What about visual data? Much worse...
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Visual search, organization

Query Image or video
archives

Relevant content

26/03/19 Marco La Cascia
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Challenges: Complexity

* Thousands to millions of pixels in an image
e 3,000-30,000 human recognizable object categories
* 30+ degrees of freedom in the pose of articulated objects (humans)

* Billions of images indexed by Google Image Search

About half of the cerebral cortex in primates is devoted to processing
visual information [Felleman and van Essen 1991]
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Early years of CBIR

e QBIC (IBM) early 90

* Image processing for retrieval by color, texture, and local geometry

e PhotoBook (MIT) mid 90

e Semantic preserving image compression (eigen-features)

* ImageRover (BU) late 90

* Mixing text and low-level image information

e Many others

* Accumulative and global features, salient points, object and shape features, signs, and
structural combinations

e Similarity of pictures and objects in pictures

[Smeulders et al. 2000] Smeulders, AW.M. Worring, M. Santini, S. Gupta, A. Jain, R.: Content-Based
Imaﬁe Retrieval at the End of the Early Years. IEEE Transactions on Pattern Analysis and Machine
Intelligence. vol. 22, No. 12. pp. 1349-80. (2000)
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The semantic gap

* The lack of coincidence between the information that one can extract
from the visual data acquired from an image and the interpretation
that the same data have for a user in a given situation.

[Smeulder et al. 2000]

Difference between low-level representation of an image and high-
level human perception
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And then?

 Hundreds of papers
 More powerful visual features
e Better similarity distance

e Some significant applications in very specific domains

Semantic gap? Still there

26/03/19 Marco La Cascia
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Deep learning

 CNN for image classification
e Object detection by Region based Convolutional Networks (R-CNN)

 CNN for feature extraction and representation.
e No more human design of visual feature.

e Generative Adversarial Network (GAN) to create a variety of realistic
images corresponding to the description.

 Multimodal embedding: Deep Boltzmann Machines, Restricted Boltzmann
Machines, CNN to process visual data + MLLP or LSTMs to embed text
features

e Siamese network (two weight-sharing networks running on two images) to
model similarity function




Very impressive results

o0 e = predictions.jpg -
i8hg

14x14 Feature Map

L.Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word
generation

Xu,K. Ba,J. Kiros,R. Cho,K. Courville,A. Salakhutdinov,R. Zemel,R. Bengio,Y.
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention.
International Conference on Machine Learning, 2015

Redmon,lJ. Divvala,S. Girshick,R. Farhadi,A.
You Only Look Once: Unified, Real-Time Object Detection.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2016

26/03/19 Marco La Cascia 10



Question

CBIR at the time of deep learning:
has deep learning closed the semantic gap?
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Academia Sinica, Taiwan

tshsu@jis.sinica.edu.tw
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About me

Academia Sinica is THE governmental pure research laboratory

in Taiwan.
o Have 31 institutes working on nature science, life science and social
science.

o Institute of Information Science is the computer science branch.

Laboratory of Massive Data Computing and Management
o Since the year 2000

o Efficient algorithms for processing large data
o Applications
> Data privacy
> Classical board games
> Simulations of disease spreading through contacts
> Construction and understanding of human disease network

Research and teaching
o Areas

> Algorithm design and implementation
> Graph theory
> Massive data computing

e Teach a course once per year at National Taiwan University

ALLDATA: Panel, 20190326, Tsan-sheng Hsu (© 2



Points of interest (I)

Deep learning has enjoyed lots of success right now on data

with patterns.
e For example:
> Medical images
> Board games
> Natural language processing

Discusions:
e Does deep learning actually learn the “knowledge” underneath the
data, or just tags/labels assigned?
o Are manually/auto-converted assigned labels inevitably biased, unfair

and sometimes unethical?
o Can an explanation of the “intelligence” uncovered be easily derived?

ALLDATA: Panel, 20190326, Tsan-sheng Hsu (© 3



Points of interest (Il)

Maybe to remedy the labeling problem, board game playing
programs like AlphaZero use “simple” and “transparent” rules
to do unsupervised learning, instead of supervised learning as in
AlphaGo.

e Go is a complex, not complicated game.
e Go boards are “visual’ data.

o Supervised learning takes previous game logs with labels.
e Basic rules for playing Go is simple.

e Learn the basic rules, not the labels.

o

A great line of success for board game playing
AlphaGo (2016) — AlphaGo Zero (2017) — AlphaZero (2018)

Discussions:
e Are the rules of Go really simple if a board position is complex?

> Life and death
> Avoid immediate loops (Ko), but allow longer loops

e Are simple rules available for very complex system?

ALLDATA: Panel, 20190326, Tsan-sheng Hsu (© 4



Backup slides

ALLDATA: Panel, 20190326, Tsan-sheng Hsu (©



Face recognition software bias

[OR0F"] theverge.com E]

THEVERGE :cn REVIEWS SCIENCE ENTERTATNMENT

- @ w (Al

TECH \ &MAZON \ ARTIFICIAL THTELLI GENCE

Gender and racial bias found in Amazon’ s
facial recognition technology (again)

arch shows that Amazon s tech has a harder time identifying gender in darker-skinned and

By James Yincent | Jan 25, 2019, 9:4bam EST

f W [ GHERE

James Vincent, Jan 25, 2019, the verge, https://www.theverge.com/2019/1/25/18197137 /amazon-rekognition-facial-recognition-bias-race-

gender

ALLDATA: Panel, 20190326, Tsan-sheng Hsu (©



Al chat Bot bias

@ @ https://en.wikipedia.org/wiki/Tay_(bot) B 150% ) | e i d |0\ kearch ¥ In@ » =

From Wikipedia, the free encyclopedia

This article has multiple issues. Please help improve it or discuss [show]
these issues on the talk page. (Learn how and when to remove these template

messages)

Tay was an artificial intelligence chatter bot that was originally released by
Microsoft Corporation via Twitter on March 23, 2016; it caused subsequent
controversy when the bot began to post inflammatory and offensive tweets
through its Twitter account, forcing Microsoft to shut down the service only 16
hours after its launch.!1] According to Microsoft, this was caused by trolls who
"attacked" the service as the bot made replies based on its interactions with
people on Twitter.[2] It was soon replaced with Zo.

Contents [hide]
1 Background
1.1 Creation
1.2 Initial release

1.3 Suspension

The Twitter profile picture of Tay

1.4 Second release and shutdown
Developer(s) Microsoft Research, Bing

2 Legacy
3 See also Available in English
4 References Type Artificial intelligence
. hatterbot
5 External links SiElE=n
License Proprietary
Website tay.aid

Background | edit |

Wiki, https://en.wikipedia.org/wiki/Tay_(bot)
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AlphaGo

AlphaGo Master (white) v. Tang Weixing (31 December 2016), AlphaGo won by resignation. White 36 was widely praised.

First 99 moves Moves 100-186 (149 at 131, 150 at 130)

Wiki, https://en.wikipedia.org/wiki/AlphaGo

ALLDATA: Panel, 20190326, Tsan-sheng Hsu (©



Complicated Go, 1/2 point win/Draw

eGS0 ee e
8 200 a0
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RAH), game played by RifFIE (black) vs /MA TR 1993/9/2, Honinbo competition, Japan; https://kknews.cc/zh-tw /sports/6ne8oxl.html
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Self-driving dilemmas

® © & https://www.nature.com/articles/d41586-018-07135-0 El 80w e * |C‘\’|5earch

nawre

Self-driving car dilemmas reveal that moral
choices are not universal

Survey maps global variations in ethics for programming autonomous vehicles.

Amy Maxmen

,L PDF version

RELATED ARTICLES

Autonomous vehicles: No
drivers required

Machine ethics: The robot’s
dilemma

Editorial: Road test

SUBJECTS

Self-driving cars are being developed by several major technelogy companies and carmakers.  credit: VCG/Getty

Computer science Ethics

Amy Alexmen, 2018/10/24, Nature 562, 469-470 (2018) doi: 10.1038/d41586-018-07135-0

ALLDATA: Panel, 20190326, Tsan-sheng Hsu (©
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Moral choices are not universal

@ U & htt

ww.nature.com/article

ME nature

MORAL COMPASS

A survey of 2.3 million people worldwide reveals variations in the moral
principles that guide drivers’ decisions. Respondents were presented with 13
scenarios, in which a collision that killed some combination of passengers,
and pedestrians was unavoidable, and asked to decide who they would spare.
Scientists used these data to group countries and territories into three groups
based on their moral attitudes.
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Amy Alexmen, 2018/10/24, Nature 562, 469-470 (2018) doi: 10.1038/d41586-018-07135-0
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