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WHAT IS A SIDE-CHANNEL ATTACK

A direct attack involves modifying victim’ s program or the computing environment in which it runs.

A side-channel attack does not directly modify victim’s application but makes observations about the

application and " derives’ information about the victim’ s application from the observations.

public void addMemberToMemberHistory(final Participant member,

&)me typl Cal types Of Ob%rvatl Ons made durl ng final boolean shouldBeKnownMember, final SendersReceiversConnection

connection) throws SenderReceiversException {

if (shouldBeKnownMember &k !previouslyConnected){

Slde-Channel attaCkS stringBuilder.append("WARNING:" + member.grabName() ...);
}

Timing Attacks: Measure execution time of user applications

To determine which execution path taken y
else {...; stringBuilder.append("Reconnected to);}

And pOSSI b|y Obta| N Val ues Of Vanab'es if (customer.hasCallbackAddress()) {...}

this.withMi.sendReceipt(...);
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WHAT IS A SIDE-CHANNEL ATTACK

Timing Attacks: Measure execution time of user applications

Determine cache misses and identify which victim’s memory was accessed

Power/Energy Attacks: Measure the amount of power/energy consumed by an application
If the attacker cannot measure timing accurately, it may be possible

to obtain timing information from energy consumption

Electromagnetic waves emitted: To observer what information was displayed on a monitor

Some such attacks on 10T’ s in advanced manufacturing systems have been reported
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ABC OF CACHE MEMORIES

Two architectural features that aid side-channel attacks

INDEX 32-bit address

How does a cache work?
Consider a 64K B direct mapped cache .._..

with 64byte cache blocks

Notice how the cacheis
INDEXED

Tags of data currently in Cache Datain Cache (64 bytes per line)
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CACHE MEMORIES

If we use set-associative cache, we then refer the Index as the index to a set.

A set contains more than one entry and

we search all the tags associated to find a match (hit)

Here we have a 4-way set associative cache

| use this depiction for the purpose of
understanding.

A set iscomprised of one cacheline from
each of the 4 portions
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18-bit block ID (or tag)

6-bit byte address




CACHE SIDE-CHANNEL ATTACK

The key takeaway is: Multiple addresses map to the same INDEX in cache

We need to evict current occupants to make room for new data
We can use LRU to evict one line of a set

Or use other methods including random choice

Some systems “reserve” certain “ways’ in a set for secure applications

Most cache based side-channel attacks rely on conflicts in cache

If the attacker’ s cache data is evicted, it is evicted by a victim’s data
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CACHE SIDE-CHANNEL ATTACK

Some examples of well known attacks: Bernstein’s attack on AES

A common implementation uses tables containing some AES computations

(SubByte and MixColumns)
The tables are accessed using a portion of the key XORed with plain text Tbleof

Precomputed

The data in the tables will be stored in Cache Values

Plain Text

Thus the index to the table forms a partial Cache Address
And we can then predict cache location (or INDEX) from this address
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CACHE SIDE-CHANNEL ATTACK

In order to perform any cache attacks, the attacker needs

information regarding cache architecture (associativity, block size and capacity)

Most modern processors have Performance Counters (or registers) that can be programmed

to monitor different types of events, including cache misses

Most Operating Systems have libraries that can be used for this purpose

(Android does not provide an easy way to obtain such information)
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CACHE SIDE-CHANNEL ATTACK

Some common approaches to cache side channel attacks

Prime and Probe Attack
Attacker fills entire cache (prime)
When victim application executes, it will likely evict some of attacker data

Attacker can detect which cache lines were evicted when his/her code is executed again
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CACHE SIDE-CHANNEL ATTACK

Evict and Time
Attacker evicts a specific cache entry (or entries), accessing a specific address
If this causes cache misses when victim program is executed, it reveals victim'’ s address
Attacker can repeat this process to evict every cache entry and obtain all addresses

accessed by victim

The information regarding cache misses can be obtained using hardware performance counters

Some counters provide fine-grained information = to allow optimizations

Some new hardware systems are proposing to NOT provide such detailed information
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CACHE SIDE-CHANNEL ATTACK

Flush and Reload (similar to Prime and Probe)
Can be used to evict “shared” data across multiple cores

clflush instruction evicts data from all cache levels including shared Last Level Cache

Allows attacker to run on a different core and observe victim’s execution
Works to reveal shared pages
Shared pages are created to save space for shared information (de-duplication)

In al these attacks, attacker relies on the traditional cache indexing

Solutions either rely on or " cache accesses
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CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Partitioning can be achieved either in software or hardware
Memory can be partitioned such that secure applications are executed in secure partitions
Some cache designs (ARM with trusted zones) flags data belonging to secure
(and non-secure) applications

A non-secure application cannot evict cache lines belonging to secure applications

It is also possible to partition cache and reserve some portions for secure applications

A recent proposal reserves “ways’ in set-associate cache to secure applications

For example, in a 8-way associative cache, one can set aside 4-ways for secure computations.
Non-secure computations cannot use these ways or evict secure ways

However, thislimits the available cache and thus cause performance penalties
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CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Note that we need to protect meta data also (such
as LRU and coherency information)

(Tree-PLRU . .
decision tree) Can cause performance penalties since each

>
application now has smaller cache capacities
Protection domain R
for this request

Attacker can only evict victim data if they are assigned to the same protection level (hence same ways)
LRU replacement information used for replacement is also per way basis

V. Kiriansky, et. Al. “DAWG: A defense against cache timing attacks in speculative execution processors’,
MICRO-2018
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CACHE SIDE-CHANNEL ATTACK SOLUTIONS

The second technique is randomizing cache access
Again, this can be achieved in hardware or software
OS can randomize where user stack/heap data is stored > ASLR
This makes it difficult for an attacker to launch attacks forcing victims data in

specific locations evicted

Applications can also introduce some randomness in the data being accessed

create random accesses to unneeded data
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CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Randomizing memory allocation

Some attacks that rely on the knowledge of memory address (such as OS pages) can be mitigated

One solutions is randomize where OS
Stack segment libraries are located in the address space

(ASLR)

Dynamic data
Data segment

10000000y,
Text segment

400000},




CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Now let us look at some hardware level randomization techniques
Wong and Lee proposed to redirect cache accesses to different locations
The cache index is used as an index into a “ permutation” table
The permutation table indicates the actual cache location (or index) for the data

By changing the entries in the permutation table, you can randomize the placement of data
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Z.Wang and R. Lee. New cache designs for thwarting software cache side-channel attacks, ISCA-2007

Address decoder
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CACHE SIDE-CHANNEL ATTACK SOLUTIONS

A couple of performance problems with this solution

Need to use an additional table lookup to access cache
This delaysthe “critical path” of cache access, significantly impacting performance
if used at L1 level

The tables must be reloaded for each application

Otherwise, the same index is redirected to the same cache location
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CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Our solution also randomizes cache access, but easier to implement in hardware and does not add to access delays.

The bits comprising index can be programmed for each application

In this figure we show the possibility of having multiple indexes applied “at the same” time
Each index being used for a different application
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CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Different indexes can be implemented using
“masking”

A configuration register can indicate which Indexing
method to use for each process

Figure 2. Address decoding using masks
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CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Attacker guess the “index” of the victim data that is evicted (or evicted attacker’ s data)
Since the attacker and victim applications use different address bits for index, attacker cannot

predict the victim’s memory address

Will this approach increase or decrease cache miss rates (and thus performance)?

Since we may be eliminating some cache conflicts, performance in multicore systems may improve

However, the index choice may reduce cache localities and thus increase cache misses for each application

What are some choices for different index bits?
Shift or rotate index hits

XOR index with a portion of tag bits
AND or OR index with a portion of the tag bits
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CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Some initial results

Using XOR index with Tag
and rotating index bits

Each of 4 applications running concurrently

use different indexing
This graph shows cache misses

Benchmarks consist of different applications
on different cores
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CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Some results

Here we show performance loss
in terms of (simulated) clock
cycles

Notein one case, thereis
performance gain.
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Original Sim Time

17805945346
37515648446
14992571428
18569982856
13490766905

9926563261
18249581770
14997665398

Modified Sim Time

17977248299
38184416139
15039425602
18763125843
13511609002

9923765935
18380349795
15110962696

Performance Loss

0.96%
1.78%
ORCH!
1.04%
0.15%
-0.03%
0.72%
0.76%




CACHE SIDE-CHANNEL ATTACK SOLUTIONS

How many address bits can an attacker predict based on how addresses are mapped to cache locations?
Consider a ssmple module mapping (conventional) of addresses to cache lines

—> index depends on some specific bits of an address

16-bit block ID (or tag) | 10-bit block address 6-bit byte address
INDEX

S0, the bit values of the 10 bit indexes can be determined from the set to which an address is mapped

For example, for set O, all TEN index bits are zero
Entropy idea: if a specific address bit  is aways O (or always 1) for set  then
if there is a 50% probability that bit  is zero and 50% probability it is one,
L ow entropy = bits are predictable - more information leak
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CACHE SIDE-CHANNEL ATTACK SOLUTIONS

We collected information leakage by different address mapping techniques using randomly generated memory

accesses and using standard applications (benchmarks)

Tested using several different techniques for randomizing address mapping

TAG bits INDEX bits Byte-Offset

Bits?

Rotate-right the set-index address bits by 3 bit positions
XOR the set-index address bits with least significant tag bits of address
Rotate-right the set-index address bits by 1 bit position, and XOR the result with tag bits of address
Square the tag bits of the address, and XOR the middle n bits of result with the n set-index address bits
Multiply the tag bits by 7, add to set-index address bits
See description in [37]. Two-stage hash of cache slice.
Based on scheme in [31]. We used the DES encryption cipher [27] to compute the cache set index.
TABLE I: Overview of Cache Set Mapnping Schemes
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CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Modulo

Summary of results
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but adversely impact performance

SPEC and Cryptography Workloads
Fig. 12: L1D Performance-Security Product Metric of SPEC and Cryptoaraphy Workloads
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CACHE SIDE-CHANNEL ATTACK SOLUTIONS

More experimentation is needed
More techniques - periodically changing mapping introduces more randomization (less leakage)

—> but will likely cause performance penalties (more cache misses)

Evaluate PS metric for partitioning techniques
—> partitioning leaks less information

- but potentially causes higher performance penalties

Need to consider defining “information leakage” for timing attacks

How predictable are the execution times?
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ATTACKS BASED SPECULATIVE EXECUTION

Timing Attacks

M easure execution times
Use to predict if some cache data is evicted or not
Also to predict which control path is taken

public void addMemberToMemberHistory(final Participant member,
final boolean shouldBeKnownMember, final SendersReceiversConnection

A CarerI anal ySlS Of branCheS and connection) throws SenderReceiversException {
control paths may predict the input if (shouldBeKnownMenber &k !previouslyConnacted){

stringBuilder.append ("WARNING:" + member.grabName() ...);

values. N

if (!previouslyConnected){

Execution times may depend on the
control paths taken during execution !

else {...; stringBuilder.append("Reconnected to);}
:-l:;!.{custmr.hascallbacnddrms(ﬂ {...} . by
this.withMi.=sendReceipt(...); ?\*@
} o4

(o)
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ABC OF SPECULATIVE EXECUTION

Branch decision is known only during
Execute Stage

The address of branch target (if branch
condition istrue) is also known in Execute

Stage

We may |ose performance due to these
delays

A smplified representation of instruction execution pipeline = in real systemsthere may as
many as 20+ stages - branch prediction can say many cycles
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THE BASIS FOR SIDE-CHANNEL ATTACKS

Modern processors use speculative execution and rely on Branch Prediction

Consider this ssimple example (from my class)
for (i=0; i<n; i++) {di] = a[i]+1;}
Loop: Id x2, 0(x1) [* load &[i] into x2
addi X2, x2,1 [* increment a[i]
sd x2, 0(x1) [* store d[i]
addi x1, x1, 8 [* compute address of next gi]
bne x1, x3, Loop [* check if done

We can track execution cycles when a instruction starts executing, completes execution and writes results

We can see the impact of speculation by monitoring the execution of this code
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SIDE-CHANNEL ATTACKS BASED ON SPECULATION

Iteration
Number

Instruction

Id X2, 0(X1)

addi X2, X2, 1

sd X2, 0(X1)

addi X1, X1, #8
bne X1, X3, looop

Id X2, 0(X1)

addi X2, X2, 1

sd X2, 0(X1)

addi X1, X1, #8
bne X1, X3, looop

Id X2, 0(X1)

addi X2, X2, 1

sd X2, 0(X1)

addi X1, X1, #8
bne X1, X3, looop

Fetch

Decode/re
ad inputs

Execute

Memory

Dual |ssue Speculative Execution Example
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Result
available

Commit

|d from second iteration should
not start executing until bne
(branch if not-equal) from first
iteration has completed

|d should not start execution until
cycle 8.

But by predicting bne will be
successful, we will speculatively
execute Id from second iteration in
cycle7




SIDE-CHANNEL ATTACKS BASED ON SPECULATION

Note that the speculation also caused the Id (load) from next iteration to be executed
If the address referenced is not in cache, we will fetch it into cache

Consider the case for aloop like

for (i=0; i<100; i++) {d[i] = b[i]+....;}

Now, look at the case when i=100. Before we complete the test i<100 using bne type instruction

We will assume that bne will succeed and execute next iteration = read b[100] speculatively

When bne for the last iteration is actually tested, we will discard all instruction from iteration i=100

but b[100] is aready in cache.
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SIDE-CHANNEL ATTACKS BASED ON SPECULATION

Speculative execution is the basis for Spectre and Meltdown attacks

An attacker attempts to read secure pages (such as OS pages)
The system (or runtime checks) will detect such illegal access and abort attacker programs

However, the datais already “read” speculatively and stored in cache
Systems do not clean up cachesfor illegal access

Once in the cache, attacker can use cache side-channel attacksto obtain the datain secure pages

Before discussing solutions, let us understand how processors implement speculative execution
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THE BASIS FOR SIDE-CHANNEL ATTACKS

Branch Target Buffer (BTB)

A few thingsto understand here.
The Branch Target Buffer is accessed during instruction fetch
If branch prediction is “taken”, the processor starts fetching instruction from the target addressin BTB
Otherwise the PC incremented and next instruction in sequence is fetched
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THE BASIS FOR SIDE-CHANNEL ATTACKS

What if we periodically reset the branch prediction table
Assume resetting means that all brancheswill be predicted as “not Taken”

Thisislikely to cause more branch mispredictions - causes execution delays
Changes execution times and order compared to when normal speculation is used
Also, cannot be sure if anillegal load will be executed, bringing datato cache

This causes performance loss. But we can control how much lost by changing the frequency of resetting PT
If we reset on every instruction: effectively turning-off speculation completely
If we do not reset, full speculation

How to decide on when to reset PT
a). Based on cache misses in shared cache (depends on what other applications are running)
b), Based on the number of instructionsissued - depends on last time PT was reset
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DEFEATING SPECULATION

This table shows which instructions will be initiated
depending the prediction of
BLT loop instruction

Most dynamic predictors predict BLT will be taken
(at most after 2 mispredictions)

We proposed to reset this prediction at different times
during the execution

Thiswill impact execution times

Also impact if adataitem is speculatively accessed or not
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iterat
ion #

B.LT PREDICTED TAKEN

Instruction Issued

LDUR S3, [X1, #0]
FADD S4, S4, S3
ADD X8, X8, #4

ADD X10, X10, #1
CMP X10, X3
B.LT loop

LDUR S3, [X1, #0]
FADD S4, S4, S3
ADD X8, X8, #4

ADD X10, X10, #1
CMP X10, X3
B.LT loop

LDUR S3, [X1, #0]
FADD S4, S4, S3
ADD X8, X8, #4

ADD X10, X10, #1
CMP X10, X3
SCVTF S5, X3
FDIV S1, S4, S5
STUR S1, [X2, #0]
11

12

B.LT PREDICTED NOT TAKEN

Instruction Issued

LDUR S3, [X1, #0]
FADD S4, S4, S3
ADD X8, X8, #4

ADD X10, X10, #1
CMP X10, X3
B.LT loop

SCVTF S5, X3
FDIV S1, S4, S5
STUR S1, [X2, #0]

11
12

LDUR S3, [X1, #0]
FADD S4, S4, S3
ADD X8, X8, #4

ADD X10, X10, #1
CMP X10, X3
B.LT loop

LDUR S3, [X1, #0]
FADD S4, S4, S3
ADD X8, X8, #4
ADD X10, X10, #1
CMP X10, X3
B.LT loop

SCVTF S5, X3
FDIV S1, S4, S5
STUR S1, [X2, #0]
11

12




DEFEATING SPECULATION

% Performance Loss

2.00%
Total Execution Cycles 0.00%
-2.00%

-4.00%

-6.00%

-8.00%

-10.00%

-12.00%

flushing every...
flushing every...
flushing every.
flushing every...

x
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:
E
£
E

flushing every.
flushing every...
flushing every...

-14.00%

=

M basicmath M string search
mbasicmath mstring search = fft




DEFEATING SPECULATION

Need |ot more analyses

1. Create more realistic architectural ssmulations
Use gem5 - afull system simulator
Can simulate multicore processors and more complex branch prediction techniques
Explore ” Random” times for resetting branch prediction
Number of instructions issued - depends on the prediction
Number of instructions completed does not depend on prediction
Number of cache misses - depends on other tasks running at the same time
—> depends on branch prediction

. Combine Cache Indexing techniques with Defeating speculation

Explore combining our techniques with other techniques
Most importantly, launch Spectre/Meltdown style attacks and analyze security benefits
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SILENT SPECULATIVE LOADS

The main source of attacksis that are executed speculatively
If the load misses cache, data is brought into cache (and used by speculative instructions)

If the load is a hit in cache, meta data associated with the cache line is updated
L RU information, Coherency state

Some recent proposals

InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy, M. Yan et. a (U of Illinoisand Tel
Aviv), IEEE MICRO-2018

Krishna Kavi




SILENT SPECULATIVE LOADS

L1- Caane CoreC1 CoreC2 L1- Cac*e

Use buffers for speculative load instructions
If missesin cache, do not bring data into cache, only to buffer
If hits cache, bring a copy to buffer but do not update meta data
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SILENT SPECULATIVE LOADS

L1- Cac]ve CoreC1 CoreC2

Handling memory ordering (and coherency)
Speculative load is silent so no other cores are aware of the “read”
When the speculative load instruction commits, the Core will issue a new non-speculative load
If other cores have "modified” data, the load fails and need to undo all speculative instructions
that used speculative load data
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SILENT SPECULATIVE LOADS

Note: The memory order is different from current implementations.

e

Speculative Writeby a Commit Uncommit Re-execute
load differ core speculative |oad and  instructions
load subsequent
(reissue instructions
load?) in reorder
buffer

Conventional systems assume that the “speculative load” when commits, does not check for writes from other cores

The new implementation reissues aload at commit - the speculative load may have to be invalidated

Performance penalties: The locality of datais not present in buffer
May cause more cache misses since speculative access is hidden from cache
Coherency issues may require “uncommitting” a sequence of instructions
currently not done in architectures
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SILENT SPECULATIVE LOADS >TRANSACTIONAL MODELS

We are exploring a variations to using Transactional Memory models = speculation is viewed as a new transaction

TM systems are based on Database Transactions and fulfill 3 of the ACID properties
A: Atomicity: The entire transaction is treated as a single action, either completes or aborts
C: Consistency: A transaction guarantees a consistent state (no partial changes)
I: Isolation: Transactions are executed concurrently, one transaction does not impact others

TM architecture are useful when we want concurrency but not pay overhead for locks

Krishna Kavi




SILENT SPECULATIVE LOADS >TRANSACTIONAL MODELS

1. Need to be able to rollback -- changes must be buffered
2. Need to recognize failures
Maintain read and write sets with each transaction
Cache coherency extensions
Version numbers
3. Need to differentiate between values that are speculated and regular values
additional instructions such as speculative-load/store
start transaction, end transaction
4. Determine the order of committing/write-back
program order
one thread at a time (no specified order)

We use branch prediction to start a new transaction/thread (say to execute next iteration)
—> commit the thread if branch prediction is correct, or squash the thread
—> hide all memory accesses of the speculative thread/transaction
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SILENT SPECULATIVE LOADS >TRANSACTIONAL MODELS

Threads follow Data Driven model: execute when all inputs are rece
Decoupled: each thread consists of Pre-load, Execute, Post-store pl
—> preload brings data into registers
—> execute only works with registers
—> results from registers are stored in memory by post-store

etz

=X ecut

=y

The results f a thread in Registers
—> if committed, post-store proceeds
—> if not, skip post store

We plan to create thread for speculated code
—> basic blocks, loop iterations

Krishna Kavi

Preload

Execute

Doststor}

Thread 2

Thread 3

Preload

Execute

Doststor}

Thread 4

Preload

7

Execute

Doststor}




SILENT SPECULATIVE LOADS >TRANSACTIONAL MODELS

Thread
Schedule Unit

preload queue

| poststore queue executlon queue

EPs

speculative
| commit queue

: C}Dmmj
Control
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SILENT SPECULATIVE LOADS >TRANSACTIONAL MODELS

Need more study:

Formalize how a silent speculative load impacts micro-architectural state
Determine what state information can be observed through side channels
Silent loads should assure invisibility

Examples: Caching
LRU (and other meta data)
Coherency
TLB miss
Performance counters

Also, explore combined Performance — Security metrics for TM based models
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QUESTIONS?

The goal of my talk isto explore collaborations and create groups of faculty and students
to explore ideas and solutions.

If interested, contact me
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