
HARDWARE
SIDE-

CHANNEL
ATTACKS

AND
SOME

SOLUTIONS

• Krishna Kavi, Regents Professor

• University of North Texas

• CSRL.CSE.UNT.EDU/KAVI

• KRISHNA.KAVI@UNT.EDU

1

T
h
e

WHAT IS A SIDE-CHANNEL ATTACK

A direct attack involves modifying victim’s program or the computing environment in which it runs.

A side-channel attack does not directly modify victim’s application but makes observations about the

application and ”derives” information about the victim’s application from the observations.

2

1

.
.

.

.

.

b3

b1

b2

.

.

b4

2

1

1

1

1

1
1

1

$$

1

3

1

1

m2

m1

m3

m4

3

.

.

(a) (b)

Some typical types of observations made during

side-channel attacks.

Timing Attacks: Measure execution time of user applications

To determine which execution path taken

And possibly obtain values of variables

WHAT IS A SIDE-CHANNEL ATTACK

Timing Attacks: Measure execution time of user applications

Determine cache misses and identify which victim’s memory was accessed

Power/Energy Attacks: Measure the amount of power/energy consumed by an application

If the attacker cannot measure timing accurately, it may be possible

to obtain timing information from energy consumption

Electromagnetic waves emitted: To observer what information was displayed on a monitor

Some such attacks on IIoT’s in advanced manufacturing systems have been reported

…..

3

ABC OF CACHE MEMORIES

Two architectural features that aid side-channel attacks

Speculative execution

Cache memory accesses

How does a cache work?
Consider a 64KB direct mapped cache
with 64byte cache blocks

Notice how the cache is
INDEXED

4

6-bit byte address10-bit block address
INDEX

16-bit block ID (or tag)

Tags of data currently in Cache Data in Cache (64 bytes per line)

32-bit address

CACHE MEMORIES

If we use set-associative cache, we then refer the Index as the index to a set.

A set contains more than one entry and

we search all the tags associated to find a match (hit)

Here we have a 4-way set associative cache

I use this depiction for the purpose of
understanding.

One can view associativity as splitting cache
into equal-sized partitions
A set is comprised of one cache line from
each of the 4 portions

5

6-bit byte address8-bit set address18-bit block ID (or tag)

CACHE SIDE-CHANNEL ATTACK

The key takeaway is: Multiple addresses map to the same INDEX in cache

since many different address can have the same value in the index field

We need to evict current occupants to make room for new data

We can use LRU to evict one line of a set

Or use other methods including random choice

Some systems “reserve” certain “ways” in a set for secure applications

6

Most cache based side-channel attacks rely on conflicts in cache

If the attacker’s cache data is evicted, it is evicted by a victim’s data

The index portion of the victim’s data address is the same as that of the attacker

CACHE SIDE-CHANNEL ATTACK

Some examples of well known attacks: Bernstein’s attack on AES

A common implementation uses tables containing some AES computations

(SubByte and MixColumns)

The tables are accessed using a portion of the key XORed with plain text

The data in the tables will be stored in Cache

Thus the index to the table forms a partial Cache Address

And we can then predict cache location (or INDEX) from this address

If we know which cache entry is evicted, then we can find the address and thus the table index and a portion of the AES key!

7

Key

Plain Text

XOR

Table of
Precomputed

Values

CACHE SIDE-CHANNEL ATTACK

In order to perform any cache attacks, the attacker needs

information regarding cache architecture (associativity, block size and capacity)

And fine-grained measurements on cache misses

Most modern processors have Performance Counters (or registers) that can be programmed

to monitor different types of events, including cache misses

Most Operating Systems have libraries that can be used for this purpose

(Android does not provide an easy way to obtain such information)

8

CACHE SIDE-CHANNEL ATTACK

Prime and Probe Attack

Attacker fills entire cache (prime)

When victim application executes, it will likely evict some of attacker data

Attacker can detect which cache lines were evicted when his/her code is executed again

9

Some common approaches to cache side channel attacks

CACHE SIDE-CHANNEL ATTACK

Evict and Time

Attacker evicts a specific cache entry (or entries), accessing a specific address

if this causes cache misses when victim program is executed, it reveals victim’s address

Attacker can repeat this process to evict every cache entry and obtain all addresses

accessed by victim

The information regarding cache misses can be obtained using hardware performance counters

Some counters provide fine-grained information to allow optimizations

Some new hardware systems are proposing to NOT provide such detailed information

10

CACHE SIDE-CHANNEL ATTACK

Flush and Reload (similar to Prime and Probe)

Can be used to evict “shared” data across multiple cores

clflush instruction evicts data from all cache levels including shared Last Level Cache

Allows attacker to run on a different core and observe victim’s execution

Works to reveal shared pages

Shared pages are created to save space for shared information (de-duplication)

In all these attacks, attacker relies on the traditional cache indexing

Solutions either rely on “partitioning” or ”randomizing” cache accesses

11

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Partitioning can be achieved either in software or hardware

Memory can be partitioned such that secure applications are executed in secure partitions

Some cache designs (ARM with trusted zones) flags data belonging to secure

(and non-secure) applications

A non-secure application cannot evict cache lines belonging to secure applications

However this does not prevent “prime and probe” attacks

It is also possible to partition cache and reserve some portions for secure applications

A recent proposal reserves “ways” in set-associate cache to secure applications

For example, in a 8-way associative cache, one can set aside 4-ways for secure computations.

Non-secure computations cannot use these ways or evict secure ways

However, this limits the available cache and thus cause performance penalties

12

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Attacker can only evict victim data if they are assigned to the same protection level (hence same ways)
LRU replacement information used for replacement is also per way basis

V. Kiriansky, et. Al. “DAWG: A defense against cache timing attacks in speculative execution processors”,
MICRO-2018

13

Note that we need to protect meta data also (such
as LRU and coherency information)

Can cause performance penalties since each
application now has smaller cache capacities

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

The second technique is randomizing cache access

Again, this can be achieved in hardware or software

OS can randomize where user stack/heap data is stored ASLR

This makes it difficult for an attacker to launch attacks forcing victims data in

specific locations evicted

Applications can also introduce some randomness in the data being accessed

create random accesses to unneeded data

All randomization techniques have performance implications

14

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Randomizing memory allocation

Some attacks that rely on the knowledge of memory address (such as OS pages) can be mitigated

15

One solutions is randomize where OS
libraries are located in the address space
(ASLR)

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Now let us look at some hardware level randomization techniques

Wong and Lee proposed to redirect cache accesses to different locations

The cache index is used as an index into a “permutation” table

The permutation table indicates the actual cache location (or index) for the data

By changing the entries in the permutation table, you can randomize the placement of data

Z. Wang and R. Lee. New cache designs for thwarting software cache side-channel attacks, ISCA-2007

16

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

A couple of performance problems with this solution

Need to use an additional table lookup to access cache

This delays the “critical path” of cache access, significantly impacting performance

if used at L1 level

The tables must be reloaded for each application

Otherwise, the same index is redirected to the same cache location

17

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Our solution also randomizes cache access, but easier to implement in hardware and does not add to access delays.

The bits comprising index can be programmed for each application

Tag Set Index Byte offsetTag

Tag Set Index Byte offset

TagSet Index Byte offsetSet Index

Tag Data

In this figure we show the possibility of having multiple indexes applied “at the same” time
Each index being used for a different application

18

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

19

Different indexes can be implemented using
“masking”

A configuration register can indicate which Indexing
method to use for each process

Figure 2. Address decoding using masks

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Attacker will not be able guess the “index” of the victim data that is evicted (or evicted attacker’s data)

Since the attacker and victim applications use different address bits for index, attacker cannot

predict the victim’s memory address

Will this approach increase or decrease cache miss rates (and thus performance)?

Since we may be eliminating some cache conflicts, performance in multicore systems may improve

However, the index choice may reduce cache localities and thus increase cache misses for each application

What are some choices for different index bits?

Shift or rotate index bits
XOR index with a portion of tag bits
AND or OR index with a portion of the tag bits

20

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Some initial results

21

Using XOR index with Tag
and rotating index bits

Each of 4 applications running concurrently
use different indexing

This graph shows cache misses

Benchmarks consist of different applications
on different cores

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Some results

22

Here we show performance loss
in terms of (simulated) clock
cycles

Note in one case, there is
performance gain.

Original Sim Time Modified Sim Time Performance Loss

17805945346 17977248299 0.96%

37515648446 38184416139 1.78%

14992571428 15039425602 0.31%

18569982856 18763125843 1.04%

13490766905 13511609002 0.15%

9926563261 9923765935 -0.03%

18249581770 18380349795 0.72%

14997665398 15110962696 0.76%

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

Information Theoretic analysis of cache side channel attacks

How many address bits can an attacker predict based on how addresses are mapped to cache locations?

Consider a simple module mapping (conventional) of addresses to cache lines

 index depends on some specific bits of an address

So, the bit values of the 10 bit indexes can be determined from the set to which an address is mapped

For example, for set 0, all TEN index bits are zero

Entropy idea: if a specific address bit ai is always 0 (or always 1) for set sj then entropy = 0

if there is a 50% probability that bit ai is zero and 50% probability it is one, entropy = 1

Low entropy bits are predictable more information leak

23

6-bit byte address10-bit block address
INDEX

16-bit block ID (or tag)

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

We collected information leakage by different address mapping techniques using randomly generated memory

accesses and using standard applications (benchmarks)

Tested using several different techniques for randomizing address mapping

24

Byte-OffsetINDEX bitsTAG bits

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

25

S
yn

th
_16

KB

Syn
th

_12
8K

B

Syn
th

_1
M

B

Syn
th

_8
M

B

S
yn

th
_64

M
B

Syn
th

_5
12M

B

1

3

5

0

2

4

6

Set Bits

Leakage

Synthetic Workloads under ASLR

Modulo

Rotate-3

XOR

Rotate-then-XOR

Square-then-XOR

Odd-Multiplier-7

(a) Leakage of Set-Index Bits

Syn
th

_1
6K

B

Syn
th

_1
28

KB

Syn
th

_1
M

B

Syn
th

_8
M

B

Syn
th

_6
4M

B

Syn
th

_5
12

M
B

3

8

13

18

23

0

5

10

15

20

25

Tag Bits

Leakage

Synthetic Workloads under ASLR

Modulo

Rotate-3

XOR

Rotate-then-XOR

Square-then-XOR

Odd-Multiplier-7

(b) Leakage of Tag Bits
Fig. 7: Leakage Reduction under ASLR

Syn
th

_1
6KB

Syn
th

_1
28

KB

Syn
th

_1
M

B

Syn
th

_8
M

B

Syn
th

_6
4M

B

Syn
th

_5
12

M
B

1

3

5

7

9

11

13

0

2

4

6

8

10

12

Leakage

in

Set Index

Bits

Synthetic Workloads

Modulo Rotate-then-XOR Intel-Slice

Rotate-3 Square-then-XOR Encrypt

XOR Odd-Multiplier-7

Fig. 8: Leakage of Set-index Address bits in L3 on Synthetic
Programs

AES
R
SA

SH
A

bw
av

es
bz

p2

ca
ct
us

_A
D
M

G
em

sF
D
TD

le
sl
ie
3D

lib
qu

an
tu

m
m

cf
m

ilc

so
pl
es

ze
us

m
p

0

2

4

6

8

10

12

14

Leakage

in

Set Index

Bits

SPEC and Cryptography Workloads

Modulo XOR Rotate-then-XOR Square-then-XOR Odd-Multiplier-7 Intel-Slice Encrypt

Fig. 9: Leakage of Set-index Address bits in L3 on SPEC, Cryptog-
raphy Workloads

Fig. 10: Variation in Set Accesses by Schemes in libquantum

M
od

ul
o

R
ot

at
e-

3
XO

R

R
ot

at
e-

th
en

-X
O

R

Squ
are

-th
en

-X
O

R

O
dd

-M
ul
tip

lie
r-7

In
te

l-S
lic

e

0

2

4

6

8

10

12

14

16

18

20

Tag

Leakage

Mapping Scheme

Small Pages Huge Pages

Fig. 11: Impact of Huge Pages

Summary of results

Almost all techniques leak some Index and
some Tag bits

 Small programs leak more
 Techniques that create more uniform

accesses to sets leak LESS

 Huge pages leak more

Programs inherently have predictable
behaviors!

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

26

Combined Performance vs Security (leakage) metric

May provide higher level of protection, but adversely impact performance

PS metric = (Avg Cache access time)*[(# of bits leaked)/(max bits that can be leaked)
 Higher is better

AES
R
SA

SH
A

bw
av

es
bz

p2

ca
ct
us

_A
D
M

G
em

sF
D
TD

le
sl
ie
3D

lib
qu

an
tu

m
m

cf
m

ilc

so
pl
es

ze
us

m
p

G
M

EAN

0.0

0.5

1.0

1.5

2.0

2.5

3.0

PS

Metric

SPEC and Cryptography Workloads

Modulo Rotate-3 XOR Rotate-then-XOR Square-then-XOR Odd-Multiplier-7

Fig. 12: L1D Performance-Security Product Metric of SPEC and Cryptography Workloads

CACHE SIDE-CHANNEL ATTACK SOLUTIONS

More experimentation is needed

 More techniques periodically changing mapping introduces more randomization (less leakage)

 but will likely cause performance penalties (more cache misses)

Evaluate PS metric for partitioning techniques

 partitioning leaks less information

 but potentially causes higher performance penalties

Need to consider defining “information leakage” for timing attacks

How predictable are the execution times?

27

ATTACKS BASED SPECULATIVE EXECUTION

Timing Attacks

Measure execution times

Use to predict if some cache data is evicted or not

Also to predict which control path is taken
1

.
.

.

.

.

b3

b1

b2

.

.

b4

2

1

1

1

1

1
1

1

$$

1

3

1

1

m2

m1

m3

m4

3

.

.

(a) (b)

A careful analysis of branches and
control paths may predict the input
values.

Execution times may depend on the
control paths taken during execution

28

ABC OF SPECULATIVE EXECUTION

A simplified representation of instruction execution pipeline in real systems there may as
many as 20+ stages branch prediction can say many cycles

Branch decision is known only during
Execute Stage

The address of branch target (if branch
condition is true) is also known in Execute
Stage

We may lose performance due to these
delays

And hence the branch prediction and
speculative execution

29

THE BASIS FOR SIDE-CHANNEL ATTACKS

Modern processors use speculative execution and rely on Branch Prediction

Consider this simple example (from my class)

Loop: ld x2, 0(x1) /* load a[i] into x2
addi x2, x2, 1 /* increment a[i]
sd x2, 0(x1) /* store a[i]
addi x1, x1, 8 /* compute address of next a[i]
bne x1, x3, Loop /* check if done

We can track execution cycles when a instruction starts executing, completes execution and writes results

We can see the impact of speculation by monitoring the execution of this code

30

for (i=0; i<n; i++) {a[i] = a[i]+1;}

SIDE-CHANNEL ATTACKS BASED ON SPECULATION

ld from second iteration should
not start executing until bne
(branch if not-equal) from first
iteration has completed

ld should not start execution until
cycle 8.

But by predicting bne will be
successful, we will speculatively
execute ld from second iteration in
cycle 7

Dual Issue Speculative Execution Example

31

Iteration
Number Instruction Fetch

Decode/re
ad inputs Execute Memory

Result
available Commit

1 ld X2, 0(X1) 1 2 3 4 5 5

1 addi X2, X2, 1 2 5 6 6 6

1 sd X2, 0(X1) 3 6 7 8 8

1 addi X1, X1, #8 4 5 7 7 9

1 bne X1, X3, looop 5 7 8 8 10

2 ld X2, 0(X1) 6 7 8 9 9 11

2 addi X2, X2, 1 7 9 10 10 12

2 sd X2, 0(X1) 8 10 11 12 13

2 addi X1, X1, #8 9 10 11 11 13

2 bne X1, X3, looop 10 11 12 12 14

3 ld X2, 0(X1) 11 12 13 14 14 15

3 addi X2, X2, 1 12 14 15 15 16

3 sd X2, 0(X1) 13 15 16 17 18

3 addi X1, X1, #8 14 16 17 17 19

3 bne X1, X3, looop 15 17 18 18 20

SIDE-CHANNEL ATTACKS BASED ON SPECULATION

Note that the speculation also caused the ld (load) from next iteration to be executed
If the address referenced is not in cache, we will fetch it into cache

Consider the case for a loop like
for (i=0; i<100; i++) {a[i] = b[i]+….;}

Now, look at the case when i=100. Before we complete the test i<100 using bne type instruction

We will assume that bne will succeed and execute next iteration read b[100] speculatively

When bne for the last iteration is actually tested, we will discard all instruction from iteration i=100

but b[100] is already in cache. Most processors do not remove this data from cache.

32

SIDE-CHANNEL ATTACKS BASED ON SPECULATION

Speculative execution is the basis for Spectre and Meltdown attacks

An attacker attempts to read secure pages (such as OS pages)
The system (or runtime checks) will detect such illegal access and abort attacker programs

However, the data is already “read” speculatively and stored in cache
Systems do not clean up caches for illegal access

Once in the cache, attacker can use cache side-channel attacks to obtain the data in secure pages

Before discussing solutions, let us understand how processors implement speculative execution

33

THE BASIS FOR SIDE-CHANNEL ATTACKS

A few things to understand here.
The Branch Target Buffer is accessed during instruction fetch
If branch prediction is “taken”, the processor starts fetching instruction from the target address in BTB
Otherwise the PC incremented and next instruction in sequence is fetched

34

Branch Target Buffer (BTB) 2-bit prediction (PT)

Instruction address if taken

Low order bits of PC
As Index

Upper bits of PC
As TAG

THE BASIS FOR SIDE-CHANNEL ATTACKS

What if we periodically reset the branch prediction table
Assume resetting means that all branches will be predicted as “not Taken”

This is likely to cause more branch mispredictions causes execution delays
Changes execution times and order compared to when normal speculation is used
Also, cannot be sure if an illegal load will be executed, bringing data to cache

This causes performance loss. But we can control how much lost by changing the frequency of resetting PT
If we reset on every instruction: effectively turning-off speculation completely
If we do not reset, full speculation

How to decide on when to reset PT
a). Based on cache misses in shared cache (depends on what other applications are running)
b), Based on the number of instructions issued depends on last time PT was reset

35

B.LT PREDICTED TAKEN B.LT PREDICTED NOT TAKEN

iterat
ion # Instruction Issued Committed iteration # Instruction Issued Committed

…. ….

i LDUR S3, [X1, #0] YES i LDUR S3, [X1, #0] YES
I FADD S4, S4, S3 YES I FADD S4, S4, S3 YES
I ADD X8, X8, #4 YES I ADD X8, X8, #4 YES

I ADD X10, X10, #1 YES I ADD X10, X10, #1 YES
I CMP X10, X3 YES I CMP X10, X3 YES
I B.LT loop YES I B.LT loop YES

I+1 LDUR S3, [X1, #0] YES SCVTF S5, X3 NO
I+1 FADD S4, S4, S3 YES FDIV S1, S4, S5 NO
I+1 ADD X8, X8, #4 YES STUR S1, [X2, #0] NO

I+1 ADD X10, X10, #1 YES I1 NO
I+1 CMP X10, X3 YES I2 NO
I+1 B.LT loop YES I+1 LDUR S3, [X1, #0] YES
….. I+1 FADD S4, S4, S3 YES

I+1 ADD X8, X8, #4 YES

I=n LDUR S3, [X1, #0] NO I+1 ADD X10, X10, #1 YES
I=n FADD S4, S4, S3 NO I+1 CMP X10, X3 YES
I=n ADD X8, X8, #4 NO I+1 B.LT loop YES

I=n ADD X10, X10, #1 NO … YES
I=n CMP X10, X3 NO I=n-1 LDUR S3, [X1, #0] YES

SCVTF S5, X3 YES I=n-1 FADD S4, S4, S3 YES
FDIV S1, S4, S5 YES I=n-1 ADD X8, X8, #4 YES
STUR S1, [X2, #0] YES I=n-1 ADD X10, X10, #1 YES
I1 YES I=n-1 CMP X10, X3 YES
I2 YES I=n-1 B.LT loop YES

SCVTF S5, X3 YES
FDIV S1, S4, S5 YES
STUR S1, [X2, #0] YES
I1 YES
I2 YES

This table shows which instructions will be initiated
depending the prediction of
BLT loop instruction

Most dynamic predictors predict BLT will be taken
(at most after 2 mispredictions)

We proposed to reset this prediction at different times
during the execution

This will impact execution times

Also impact if a data item is speculatively accessed or not

DEFEATING SPECULATION

36

Some initial results
Resetting PT on certain number of cycles
Single threaded system

DEFEATING SPECULATION

37

-14.00%

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

100M 50M 25M 1M 500K 250K 100K 50K 25K 10K

% Performance Loss

basicmath string search fft

More frequent resetting (e.g., every 10K instructions) leads to greater
performance loss

Need lot more analyses

1. Create more realistic architectural simulations

Use gem5 a full system simulator

Can simulate multicore processors and more complex branch prediction techniques

2. Explore ”Random” times for resetting branch prediction

Number of instructions issued depends on the prediction

Number of instructions completed does not depend on prediction

Number of cache misses depends on other tasks running at the same time

 depends on branch prediction

3. Combine Cache Indexing techniques with Defeating speculation

4. Explore combining our techniques with other techniques

5. Most importantly, launch Spectre/Meltdown style attacks and analyze security benefits

DEFEATING SPECULATION

38

The main source of attacks is load instructions that are executed speculatively

If the load misses cache, data is brought into cache (and used by speculative instructions)

If the load is a hit in cache, meta data associated with the cache line is updated

LRU information, Coherency state

 these facts reveal information to attacker

A secure architecture should bypass cache hierarchy or make the speculative load “silent”

Some recent proposals

InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy, M. Yan et. al (U of Illinois and Tel
Aviv), IEEE MICRO-2018

SILENT SPECULATIVE LOADS

39

SILENT SPECULATIVE LOADS

40

Use buffers for speculative load instructions
If misses in cache, do not bring data into cache, only to buffer
If hits cache, bring a copy to buffer but do not update meta data

Memory

L2 Cache

L1- Cache L1- CacheCoreC1 CoreC2

Buffer Buffer

SILENT SPECULATIVE LOADS

41

Handling memory ordering (and coherency)
Speculative load is silent so no other cores are aware of the “read”
When the speculative load instruction commits, the Core will issue a new non-speculative load

If other cores have ”modified” data, the load fails and need to undo all speculative instructions
that used speculative load data

Memory

L2 Cache

L1- Cache L1- CacheCoreC1 CoreC2

Buffer Buffer

SILENT SPECULATIVE LOADS

42

Speculative
load

Write by a
differ core

Commit
speculative
load
(reissue
load?)

Uncommit
load and
subsequent
instructions
in reorder
buffer

Re-execute
instructions

Note: The memory order is different from current implementations.

Conventional systems assume that the “speculative load” when commits, does not check for writes from other cores

The new implementation reissues a load at commit the speculative load may have to be invalidated

Performance penalties: The locality of data is not present in buffer
May cause more cache misses since speculative access is hidden from cache
Coherency issues may require “uncommitting” a sequence of instructions

currently not done in architectures

SILENT SPECULATIVE LOADS TRANSACTIONAL MODELS

43

We are exploring a variations to using Transactional Memory models speculation is viewed as a new transaction

TM systems are based on Database Transactions and fulfill 3 of the ACID properties
A: Atomicity: The entire transaction is treated as a single action, either completes or aborts
C: Consistency: A transaction guarantees a consistent state (no partial changes)
I: Isolation: Transactions are executed concurrently, one transaction does not impact others
D: Durability: Once a transaction completes, and commits, cannot be rolled back

TM architecture are useful when we want concurrency but not pay overhead for locks

void compute_min (j)

{…local_min = min();

lock(lock_variable);

if (local_min < global_min)

global_min = local_min;

unlock(lock_variable);

exit(); }

for (j=0; j<n; j++)

thread_id[j] = spawn_thread(compute_min, j);

for (j=0; j<n; j++)

join (thread_id[j]);

SILENT SPECULATIVE LOADS TRANSACTIONAL MODELS

44

What is needed to Implement Transactional Models in Hardware

1. Need to be able to rollback -- changes must be buffered
2. Need to recognize failures

Maintain read and write sets with each transaction
Cache coherency extensions
Version numbers

3. Need to differentiate between values that are speculated and regular values
additional instructions such as speculative-load/store

start transaction, end transaction
4. Determine the order of committing/write-back

program order
one thread at a time (no specified order)

We use branch prediction to start a new transaction/thread (say to execute next iteration)
 commit the thread if branch prediction is correct, or squash the thread
 hide all memory accesses of the speculative thread/transaction

45

Preload

Preload

Poststore

Thread0

Thread 2

Preload

Preload

Execute

Poststore

Execute

Poststore

Thread 3

Thread 4

Execute

Preload

Poststore

Execute

Execute

PoststoreThread 1

Our Own Scheduled Dataflow also permits TM

Threads follow Data Driven model: execute when all inputs are receive
Decoupled: each thread consists of Pre-load, Execute, Post-store phases

 preload brings data into registers
 execute only works with registers
 results from registers are stored in memory by post-store

The results f a thread in Registers
 if committed, post-store proceeds
 if not, skip post store

We plan to create thread for speculated code
 basic blocks, loop iterations

SILENT SPECULATIVE LOADS TRANSACTIONAL MODELS

46

SILENT SPECULATIVE LOADS TRANSACTIONAL MODELS

SILENT SPECULATIVE LOADS TRANSACTIONAL MODELS

47

Need more study:

Formalize how a silent speculative load impacts micro-architectural state
Determine what state information can be observed through side channels

Silent loads should assure invisibility

Examples: Caching
LRU (and other meta data)
Coherency
TLB miss
Performance counters
……

Also, explore combined Performance – Security metrics for TM based models

The goal of my talk is to explore collaborations and create groups of faculty and students
to explore ideas and solutions.

If interested, contact me

Krishna.kavi@unt.edu
csrl.cse.unt.edu/kavi

QUESTIONS?

48

