A Framework for Robust
Low-Overhead Binary Instrumentation

Amir Majlesi-Kupaei, Danny Kim, Kapil Anand,
Aparna Kotha, Khaled ElWazeer, Rajcev Barua

The Problem: Instrumenting programs

Program instrumentation is invaluable for following
capabilities:

Instrumenting interpreted vs. binary code

Programming Languages
e Interpreted @
(Python, Java, ...) ((
=
- Relatively easy to instrument!

e Compiled
(C, C++, Fortran, ...) C++

- Instrumentation is very complicated!

Why binary code persists?

1. IP protection
2. High performance O=

Need a binary rewriter to instrument
binary code!

Requirements for Deployment use of a

binary rewriter

e Solution must be robust

It should work for all binaries

=

High overhead is not tolerated in practice
Ce==

o It must also be low-overhead

Static binary rewriters

What is a static rewriter?

= . Static Rewriter .

Modified

Original Binary .EXE
Binary .EXE

Most commercial binaries are stripped,
so they lack:

Limitations:

|

Error prone for all wH
programs

-

-

Do not support obfuscation }

-

-

No support for self-modifying code }

-

-

Dynamically-generated code not supported

J

-

-

Binary file will change =>> Checksum mismatch

~

J

Dynamic Solutions

In-place designs

(i.e. Dyninst’06 and BIRD)

Stack Stack
4 4
{ {

Heap Heap

Dlls { Modified {
Dils

Instrumentation Code
Binary BSS Modified BSS
Memory Data e Data
Image e ’
Code a9 Rewritten Code

e No support for obfuscation, self-modifying
and dynamically generated code

Code-cache based designs

(i.e. Pin and DynamoRIO)

Dynamic
Rewriter

/306888567

They are robust but have high overhead!

Why Code-Cache has High Overhead?

e Indirect CTIs are everywhere Translation
Overhead
e

e They need to be translated Code Cache

a4
Address
Translator

Instrumented BB #1

‘ ’
R et s : Destination
e Address translation cannot | "t }X"BB” e
be PemOVBd! %direct(:ﬂ Instru)émtedBB#i : ::
i .\esinaion / : ;

BB #n Instrumented BB #n = o

Summary of existing solutions

Existing

Dynamic Binary

Rewriters

Robustness P ~
A / \
/ \
/ v Where
[: we need
\ RL-Bin / to be.
) /
S ’
S o _-

Better Performance

>

Robust but
high
overhead!

overhead

Static Binary

Rewriters

but not
robust!

Our Solution (RL-Bin)

RL-Bin @

(Robust Low-overhead Binary Rewriter)

RL-Bin has very low overhead,

(less than 5%)
O

e RL-Bin is robust,
1t supports

: Obfuscation

: Self-modifying code

BN

: Dynamically-generated code

RL-Bin’s Overall Approach

e Does not rely on static
analysis

Instead, it discovers code
dynamically as it executes

Conceptually, discover every
CTT’s target as code when
that CTI executes

RL-Bin

Disassemble
New Code
New code
executed
RL-Bin
Program
Remove redundant
No new e Cogk instrumentation
code
executed
RL-Bin

Add instrumentation
to detect new code
execution

10

1

How Far Can We Disassemble New Code? |

® When we arrive at a new code location, how far can we continue disassembling code?

® There are four possibilities:

o Straight-line code (non-CTT instructions)
m The address of the next instruction is known

o Unconditional jumps
m The address of the target is known and fixed

o Conditional branches

m Need run-time verification because we cannot

assume that both targets are code)

o Indirect CTIs

m Must be verified during run-time because targets are discovered dynamically)

Discovering new code: Conditional CTIs

The prob]em with conditional branches e Unoptimized solution for conditional CTIs

0 780%
Conditional)
CTI

[Instrumentation RL-Bin
Fall Through .

J

Taken

Conditional

[J J
Code 1 Code 2
Taken Fall Through
For obfuscated code, both targets may not
be code! [Code 1 } [Code 2 }

Discovering new code: Conditional CTIs

A lower overhead solution:

Use Hardware

breakpoints instead of

instrumentation
Much lower overhead!

13

e Optimized handling of conditional CTIs

@

Conditional
CTl RL-Bin
[Taken Code } [Fall Through Code]

Breakpoints can be removed if one or both of the targets '

are executed. Very low overhead!

Discovering new code: Indirect CTIs

Unoptimized handling of Indirect CTIs

Check Address

Instrumentation

Address Handled

~
~
~
N
~
~
~
~
N
~
N
~

Indefinite number of run-time computer targets.

e The instrumentation could be optimized and

either reduced or removed!

113%

49%

14%

CAGCHG

Branch target prediction for
common case target specialization

Function cloning to
eliminate returns

Safe functions (i.e., those that
cannot modify return address)

14

15

More Optimizations

@) o

Whitelisting Library Modules

* Optionally not monitor Win32 or standard library DLLs

* Only possible when call back functions and call back
addresses are known

@) s

Optimizing Library Calls

* Library Calls done through Import Address Table.
* An indirect call with always one destination!

» Optimize away the check by write-protecting IAT

ﬂ ' 6; =18

_CUeil'Ta register 6
“#ORD PTR

MEMORY HACKING

o Code segment is write-protected SELF" M@bl"F%,l NG

€ax, 2
eax, edx trps2, t-vd
et

o Any change to the code segment will trigger an exception CODEw OWORD PTR [rbp-4], e2x

return 42;

To detect self-modifying code, C £

.loc 1690

mov eax, 42 D.3288,

o Modified code will be disassembled and analyzed again

e The method can be optimized by adding instrumentation before and after
instructions that cause self-modification

(this is a best effort optimization to avoid triggering a lot of exceptions)

Handle race conditions from access to shared data structures, such as

disassembly table, etc.
> Thread 1 is instrumenting a piece of code ﬂ
> Thread 2 is executing the same code C
> Thread 2 might execute from an address a »

that is the middle of instrumentation instruction

added by thread 1. The application will crash!

Handled by using mutually exclusive access to shared data structures

Limitations of RL-Bin

RL-Bin can handle any application that can be debugged by a debugger.

Benign applications are meant to be debugged, so they are supported.

Troublesome feature Why debuggers would fail too

Detects changes in the code

If-referencin :
Self-referencing code (which debuggers change)

Self-checksumming Debuggers use breakpoints and
the memory image change memory checksum

: Requires no change in memory
Memory layout checking

layout (which debuggers do)

18

Results (Spec 2017 Integer)

e Normalized run-time overhead of rewriters without added instrumentation

ERL-Bin =DynamoRIO*

160 5
= 5
= 150 i
£ 5
£ 1
s : ?
3 130 = E
] - e
W 490 = &= !
= — N !
g — = = 8! 9
5 10 - B = S5 S %
S i — = mE ==
S 100 |
k 3 3 5 e N
© B !

* Pin has higher overhead than DynamoRIO according to ref. C.-K. Luk et al. ACM,2005

Results (Spec 2017 Floating Point)

e Normalized run-time overhead of rewriters without added instrumentation

110

105

P9

_ _._-;_._

19

Normalized Execution Time (%)
W 102
- 1 0

[100

[e

MM 102

107

M 101

Y
[1o

[T ek
[e

[101

(M 104

I 102
(MW 102

(I 103

MMM 102

MW 100
M 107

MW 101

100

g
\n
Z
@

))) { {)) 1) X
\!

BERL-Bin =DynamoRIO

Results with example heavyweight

instrumentation

e Run-time overhead of rewriters with added instrumentations to count external calls

e The overhead is significant because all indirect calls (which are common) must be intercepted

__300
2 280
260
i= 240

me

(U 287

g

5388R

mmm_ 124
NITTITImm 156

M 128

- 243
- 244

(I 129

(T - 208

m 107

(I 1 48
SRR 1 84
(I 138
T 161

(IIIm 1 46
I 1 &3
(133
M 134

M 123

(I 135

I 142
I 105
(AT 141
M 122

M 129

m 121
Hmm 123

Himmm 127

i 118
il 120
105

i 118

limm 120

m 106
i 124

i 106
106
108
I 104
i 110
mm 112

88
/’Q W 125

\NA
~
f

\A

A

Ny

\NA

\NA

\NA~

\NA~

Sy
2,
%,
+

%
NS
N
&
o
A~
A~

b> A 0*/ Q&
RO P

%
%
%

>

Normalized Execution

A
2
g
e N~

%

&

/®/>O\/‘
[S)
oS

/R
<
60

&
¢

o)
ILOL
0
4,
y/
%,
2.
O
"
0
S, %
S
%
OO
o.
%, Cr
O
o)

Q
+
%
%
Q
+
-

B RL-Bin =DvnamoRIO

e Accuracy and Code Coverage

o Number of dynamically executed instructions
were measured and compared against DynamoRIO.)KJ_

o Matched in all cases for SPECrate 2017 benchmarks SpeC'

o Commercial Applications were tested

: Obfuscation
: Self-modifying code "‘ Adobe
: Dynamically-generated code @

APACHE

Related Works

Robugtness

Pin nv!: moRI0 @ RL-Bin

Diota Dyninst11 4 BIRD

Better Performance

>

- e s

No support for Support conditional
obfuscation and obfuscation
dynamic features

1 3

2

Support dynamically
generated code

2 Dyninst06 SecondWrite
Support self
modifying code
5 ! Pebil Diablo
o
o
4

Support exception
based obfuscation

Future Work

e Improve robustness by overcoming limitations

e Developing custom instrumentation API
(User-friendly API for instrumentation)

e Plan to release RL-Bin publicly in late 2020

Amir Majlesi-Kupaei

University of Maryland, College Park
B majlesi@umd.edu

Danny Kim

University of Maryland, College Park

g dannykim32@agmail.com

Rajeev Barua

University of Maryland, College Park
g barua@umd.edu

RL-Bin

Thanks for your time!

25

