
A Framework for Robust
Low-Overhead Binary Instrumentation

Amir Majlesi-Kupaei, Danny Kim, Kapil Anand,
Aparna Kotha, Khaled ElWazeer, Rajeev Barua

 RL-Bin

The Problem: Instrumenting programs

Program instrumentation is invaluable for following
capabilities:

2

Vu
ln

er
ab

ili
ty

Pa

tc
hi

ng
Security

Enforcement Optim
iza

tio
n

Performance
Monitoring Resource

M
onitoringInstrumentation

3

Instrumenting interpreted vs. binary code

Programming Languages

● Interpreted
(Python, Java, …)

- Relatively easy to instrument!

● Compiled
(C, C++, Fortran, …)

- Instrumentation is very complicated!

Why binary code persists?

1. IP protection

2. High performance

Need a binary rewriter to instrument
binary code!

Requirements for Deployment use of a
binary rewriter

● Solution must be robust
It should work for all binaries

● It must also be low-overhead
High overhead is not tolerated in practice

4

Static binary rewriters

What is a static rewriter?What is a static rewriter?

Most commercial binaries are stripped,
so they lack:

5

Limitations:
Static Rewriter

Do not support obfuscation

No support for self-modifying code

Dynamically-generated code not supported

Binary file will change => Checksum mismatch
Debu

g I
nfo

Relo
cat

ion
 In

fo

Sym
bol

 Tabl
e

Error prone for all
programs

Dynamic Solutions

In-place designs
(i.e. Dyninst’06 and BIRD)

● No support for obfuscation, self-modifying
and dynamically generated code

Code-cache based designs
(i.e. Pin and DynamoRIO)

● They are robust but have high overhead!

6

Dynamic
Rewriter

Dynamic
Rewriter

Why Code-Cache has High Overhead?

● Indirect CTIs are everywhere

● They need to be translated

● Address translation cannot
be removed!

7

Translation
Overhead

Summary of existing solutions
8

Existing

Dynamic Binary

Rewriters

Static Binary

Rewriters

Robustness

Better Performance

RL-Bin

Robust but
high

overhead!

Low
overhead
but not
robust!

Where
we need
to be.

Our Solution (RL-Bin)

RL-Bin

(Robust Low-overhead Binary Rewriter)

RL-Bin has very low overhead,

(less than 5%)

9

● RL-Bin is robust,
it supports

Obfuscation

Self-modifying code

Dynamically-generated code

RL-Bin’s Overall Approach

● Does not rely on static
analysis

● Instead, it discovers code
dynamically as it executes

● Conceptually, discover every
CTI’s target as code when
that CTI executes

10

Remove redundant
instrumentation

RL-Bin

Disassemble
New Code

RL-Bin

Execute Code

Program

Add instrumentation
to detect new code
execution

RL-Bin

.

No new
code
executed

New code
executed

How Far Can We Disassemble New Code?

● When we arrive at a new code location, how far can we continue disassembling code?

● There are four possibilities:

○ Straight-line code (non-CTI instructions)
■ The address of the next instruction is known

○ Unconditional jumps
■ The address of the target is known and fixed

○ Conditional branches
■ Need run-time verification because we cannot

assume that both targets are code)

○ Indirect CTIs
■ Must be verified during run-time because targets are discovered dynamically)

11

Discovering new code: Conditional CTIs
12

● Unoptimized solution for conditional CTIs

Instrumentation

Conditional
CTI

Code 1 Code 2

Taken Fall Through

RL-Bin

780%

The problem with conditional branches

Conditional
CTI

Code 1 Code 2

Taken Fall Through

For obfuscated code, both targets may not
be code!

Discovering new code: Conditional CTIs
13

● Optimized handling of conditional CTIs

Conditional
CTI

Taken Code Fall Through Code

HW BP #1 HW BP #2

RL-Bin

Breakpoints can be removed if one or both of the targets
are executed. Very low overhead!

252%

⚫ ⚫

A lower overhead solution:

● Use Hardware
breakpoints instead of
instrumentation

● Much lower overhead!

Discovering new code: Indirect CTIs

● Unoptimized handling of Indirect CTIs

14

● The instrumentation could be optimized and
either reduced or removed!

Instrumentation

Indirect
CTI

Code 1 Code 2

RL-Bin

...

Check Address

Address Handled

- Indefinite number of run-time computer targets.

Function cloning to
eliminate returns49%

Branch target prediction for
common case target specialization113%

14%
Safe functions (i.e., those that
cannot modify return address)

More Optimizations
15

Whitelisting Library Modules

 • Optionally not monitor Win32 or standard library DLLs

 • Only possible when call back functions and call back
addresses are known

Optimizing Library Calls

 • Library Calls done through Import Address Table.

 • An indirect call with always one destination!

 • Optimize away the check by write-protecting IAT

9% 5%

Handling Self-Modifying Code

To detect self-modifying code,

○ Code segment is write-protected

○ Any change to the code segment will trigger an exception

○ Modified code will be disassembled and analyzed again

● The method can be optimized by adding instrumentation before and after

instructions that cause self-modification

(this is a best effort optimization to avoid triggering a lot of exceptions)

16

Handling Multi-Threaded Code

Handle race conditions from access to shared data structures, such as

disassembly table, etc.
➢ Thread 1 is instrumenting a piece of code

➢ Thread 2 is executing the same code

➢ Thread 2 might execute from an address

that is the middle of instrumentation instruction

added by thread 1. The application will crash!

Handled by using mutually exclusive access to shared data structures

17

RL-Bin can handle any application that can be debugged by a debugger.

Benign applications are meant to be debugged, so they are supported.

Self-checksumming
the memory image

Limitations of RL-Bin
18

Memory layout checking

● Debuggers use breakpoints and
change memory checksum

Self-referencing code
● Detects changes in the code

(which debuggers change)

● Requires no change in memory
layout (which debuggers do)

Troublesome feature Why debuggers would fail too

Results (Spec 2017 Integer)

● Normalized run-time overhead of rewriters without added instrumentation

19

* Pin has higher overhead than DynamoRIO according to ref. C.-K. Luk et al. ACM,2005

*

Results (Spec 2017 Floating Point)

● Normalized run-time overhead of rewriters without added instrumentation

20

Results with example heavyweight
instrumentation

● Run-time overhead of rewriters with added instrumentations to count external calls
● The overhead is significant because all indirect calls (which are common) must be intercepted

21

Proving Robustness

● Accuracy and Code Coverage
○ Number of dynamically executed instructions

were measured and compared against DynamoRIO.

○ Matched in all cases for SPECrate 2017 benchmarks

● Commercial Applications were tested

22

Obfuscation

Self-modifying code

Dynamically-generated code

RL-Bin

Related Works
23

Robustness

Better Performance

SecondWriteDyninst’06

Atom

DiabloPebil

DynamoRIOValgrind Pin

Dyninst’11Diota BIRD

2
Support dynamically

generated code

4
Support exception
based obfuscation

No support for
obfuscation and
dynamic features

5

Support self
modifying code

3

Support conditional
obfuscation

1

2

3

4

5

1

Future Work

● Improve robustness by overcoming limitations

● Developing custom instrumentation API
(User-friendly API for instrumentation)

● Plan to release RL-Bin publicly in late 2020

24

25

Thanks for your time!

 RL-Bin

1 Amir Majlesi-Kupaei
University of Maryland, College Park
 majlesi@umd.edu

1 Danny Kim
University of Maryland, College Park
 dannykim32@gmail.com

1 Rajeev Barua
University of Maryland, College Park
 barua@umd.edu

