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The Problem: Instrumenting programs

Program instrumentation is invaluable for following 
capabilities:
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Instrumenting interpreted vs. binary code

Programming Languages

● Interpreted
(Python, Java, …)

- Relatively easy to instrument!

● Compiled
(C, C++, Fortran,  …)

- Instrumentation is very complicated!

Why binary code persists?

1. IP protection

2. High performance

Need a binary rewriter to instrument 
binary code!



Requirements for Deployment use of a 
binary rewriter

● Solution must be robust
It should work for all binaries

● It must also be low-overhead
High overhead is not tolerated in practice
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Static binary rewriters

What is a static rewriter?What is a static rewriter?

Most commercial binaries are stripped, 
so they lack:
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Limitations:
Static Rewriter

Do not support obfuscation

No support for self-modifying code

Dynamically-generated code not supported

Binary file will change => Checksum mismatch
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Dynamic Solutions

In-place designs
(i.e. Dyninst’06 and BIRD)

● No support for obfuscation, self-modifying 
and dynamically generated code

Code-cache based designs
(i.e. Pin and DynamoRIO)

● They are robust but have high overhead!
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Why Code-Cache has High Overhead?

● Indirect CTIs are everywhere

● They need to be translated

● Address translation cannot 
be removed!

7

Translation 
Overhead



Summary of existing solutions
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Existing

Dynamic Binary 

Rewriters

Static Binary 

Rewriters

Robustness

Better Performance

RL-Bin

Robust but 
high 

overhead!

Low 
overhead 
but not 
robust!

Where 
we need 
to be.



Our Solution (RL-Bin)

RL-Bin

(Robust Low-overhead Binary Rewriter)

RL-Bin has very low overhead,

(less than 5%)
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● RL-Bin is robust, 
it supports

Obfuscation

Self-modifying code

Dynamically-generated code 



RL-Bin’s Overall Approach

● Does not rely on static 
analysis

● Instead, it discovers code 
dynamically as it executes

● Conceptually, discover every 
CTI’s target as code when 
that CTI executes
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Remove redundant 
instrumentation

RL-Bin

Disassemble 
New Code

RL-Bin

Execute Code

Program

Add instrumentation 
to detect new code 
execution

RL-Bin

.

No new 
code 
executed

New code 
executed



How Far Can We Disassemble New Code?

● When we arrive at a new code location, how far can we continue disassembling code?

● There are four possibilities:

○ Straight-line code (non-CTI instructions)
■ The address of the next instruction is known

○ Unconditional jumps
■ The address of the target is known and fixed

○ Conditional branches 
■ Need run-time verification because we cannot 

assume that both targets are code)

○ Indirect CTIs 
■ Must be verified during run-time because targets are discovered dynamically)
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Discovering new code: Conditional CTIs
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● Unoptimized solution for conditional CTIs

Instrumentation

Conditional 
CTI

Code 1 Code 2

Taken Fall Through

RL-Bin

780%

The problem with conditional branches

Conditional 
CTI

Code 1 Code 2

Taken Fall Through

For obfuscated code, both targets may not 
be code!



Discovering new code: Conditional CTIs
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● Optimized handling of conditional CTIs

Conditional 
CTI

Taken Code Fall Through Code

HW BP #1 HW BP #2

RL-Bin

Breakpoints can be removed if one or both of the targets 
are executed. Very low overhead!

252%

⚫ ⚫

A lower overhead solution:

● Use Hardware 
breakpoints instead of 
instrumentation

● Much lower overhead!



Discovering new code: Indirect CTIs

● Unoptimized handling of Indirect CTIs
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● The instrumentation could be optimized and 
either reduced or removed!

Instrumentation

Indirect 
CTI

Code 1 Code 2

RL-Bin

...

Check Address

Address Handled

- Indefinite number of run-time computer targets.

Function cloning to 
eliminate returns49%

Branch target prediction for 
common case target specialization113%

14%
Safe functions (i.e., those that 
cannot modify return address)



More Optimizations
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Whitelisting Library Modules

 • Optionally not monitor Win32 or standard library DLLs

 • Only possible when call back functions and call back   
addresses are known

Optimizing Library Calls 

 • Library Calls done through Import Address Table.

 • An indirect call with always one destination!

 • Optimize away the check by write-protecting IAT

9% 5%



Handling Self-Modifying Code

To detect self-modifying code,

○ Code segment is write-protected

○ Any change to the code segment will trigger an exception

○ Modified code will be disassembled and analyzed again

● The method can be optimized by adding instrumentation before and after 

instructions that cause self-modification

(this is a best effort optimization to avoid triggering a lot of exceptions) 
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Handling Multi-Threaded Code

Handle race conditions from access to shared data structures, such as 

disassembly table, etc.
➢ Thread 1 is instrumenting a piece of code

➢ Thread 2 is executing the same code  

➢ Thread 2 might execute from an address 

that is the middle of instrumentation instruction

added by thread 1. The application will crash!

Handled by using mutually exclusive access to shared data structures
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RL-Bin can handle any application that can be debugged by a debugger.

Benign applications are meant to be debugged, so they are supported.

Self-checksumming 
the memory image

Limitations of RL-Bin
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Memory layout checking

● Debuggers use breakpoints and 
change memory checksum 

Self-referencing code
● Detects changes in the code 

(which debuggers change)

● Requires no change in memory 
layout (which debuggers do)

Troublesome feature Why debuggers would fail too



Results (Spec 2017 Integer)

● Normalized run-time overhead of rewriters without added instrumentation
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* Pin has higher overhead than DynamoRIO according to ref. C.-K. Luk et al. ACM,2005

* 



Results (Spec 2017 Floating Point)

● Normalized run-time overhead of rewriters without added instrumentation
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Results with example heavyweight 
instrumentation

● Run-time overhead of rewriters with added instrumentations to count external calls
● The overhead is significant because all indirect calls (which are common) must be intercepted
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Proving Robustness

● Accuracy and Code Coverage
○ Number of dynamically executed  instructions 

were measured and compared against DynamoRIO.

○ Matched in all cases for SPECrate 2017 benchmarks

● Commercial Applications were tested
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Obfuscation

Self-modifying code

Dynamically-generated code 



RL-Bin

Related Works
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Robustness

Better Performance

SecondWriteDyninst’06

Atom

DiabloPebil

DynamoRIOValgrind Pin

Dyninst’11Diota BIRD

2
Support dynamically 

generated code

4
Support exception 
based obfuscation

No support for 
obfuscation and 
dynamic features

5

Support self 
modifying code

3

Support conditional 
obfuscation

1

2

3

4

5
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Future Work

● Improve robustness by overcoming limitations

● Developing custom instrumentation API
(User-friendly API for instrumentation)

● Plan to release RL-Bin publicly in late 2020
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