
Effective Course Projects
for Teaching
Distributed-Application Development

Stephen W. Clyde
Utah State University



Distributed Systems and
Applications



Distributed Systems and
Applications

 Distributed Application: An end-
user system consisting of
software components running
on multiple host machines that
share resources and coordinate
their actions to complete a task
(or tasks) through message
passing

 Distributed System:
1. A distributed environment in which a

distributed application runs

2. Also, the distributed application and the
distributed environment together

Distributed Application

Distributed System1

Distributed System2

• multiple processes
• communicate through

messages passing
• share resources
• coordinate to complete

task(s)

• communication subsystem
• physical, virtual, and logical

resources



The Need

Students graduating in

Software Engineering, Computer Science,
or other related disciplines

need to know how to use, build, test,
deploy, maintain, and operate distributed

systems and applications



Knowledge, Skills, Abilities



Some Suggested Knowledge

 Underlying Theory of Distribution

 Common system models and architectures

 Desirable characteristics for distributed applications
(e.g. extensibility, scalability, maintainability, etc.)

 Design principles

 Best practices for implementation

 Testing theory and principles

 Requirements capture and analysis (including,
Business model, who are the actors, their use
cases, operational environment)

 Data engineering

 Data science



Some Required Skills

 Network communications

 Inter-process concurrency

 Intra-process concurrency (e.g. Threading)

 Proper handling of partial failures

 Managing multiple concurrent communication channels

 Task synchronization

 Efficient communication protocol design

 Testing and debugging techniques

 Modeling skills (Conceptual)

 Integration (including integration testing)

 Prototyping

 Technology research (and evaluation)



Some Required Abilities

 Evaluating design alternatives

 Making appropriate design choices that balancing requirements, cost,
and schedule

 Ability to achieving the following to an appropriate level in a variety of
circumstances

 Reliability, Security, Scalability, Extensibility, Maintainability

 and other desirable characteristics

 Return-of-investment

 The ability to read, understand, and evolve specification

 Teamwork

 Continuous Improvement

 Realization of abstracts into implementations



A Few Thoughts on Teaching

 Help students

 Gain knowledge

 Develop new skills

 Strengthen abilities

 Encourage students to

 Discovery ideas on their own

 Take initiative and be innovative

 Learn how to learn



Purpose of this Tutorial

 Explore ideas related

 Designing course projects so they are
engaging and cover as many of the knowledge
areas as feasible,

 Coaching students as their develop new skills
and to help them successful complete the
assignments

 Evaluating the student performance in
constructive ways that helps them improve
their ability to solve real problems



Tutorial’s Learning Objectives

 Gain a better understanding of the knowledge, skills, and
abilities that students need to be effective distributed-
application developers.

 Gain a better understanding of how distributed-application
development concepts can be taught in conjunction with
good software engineering principles and practices.

 Gaining new ideas about how to make a course project more
engaging.

 Gaining new insights into how to better coach students to
successful completion of a substantial project.

 Gain new insights into how to evaluate student performance
constructively.



Programming Assignments

 What makes a good programming
assignment?

 Relevant to student body and contain
course

 Customized to the right level

 Leaving open the opportunity to develop skills
and improve abilities

 Real-world problem (from industry)

 Resume building potential

 Non-functional requirements



Programming Assignments

 What is not necessary for a good
programming assignment?



Example of a Programming
Assignment

 Context:

 OO Software Development Course

 Seniors and 1st-year graduates

 1st programming assignment

 Current principles
 Become familiar with abstraction and modularity

 Become familiar with Localization of Design Decisions,
part of modularity and based on David Parnas’ work on
decomposition of modules

 Current skill

 The strategy pattern



Example of a Programming
Assignment

 Assignment Description

 Estimated time

 Learning Objectives

 Overview

 Instructions and Requirements

 Provided codes or materials (if any)

 Notes and Hints

 Review and Submission Instructions

 Grading Criteria

https://www.dropbox.com/s/5v59vele524ht2p/Sample-Assignment.pdf?dl=0



Exercise

 Using the Tello drone, design a programming
assignment for the following:

 Distributed Systems Design Course

 Seniors and 1st-year graduates

 1st programming assignment

 Current knowledge areas
 Request-reply communication patterns

 Intra-process concurrency

 Current skill
 Implementing UDP Communications

https://www.dropbox.com/s/zvy7z68dxlpq09k/Tello-User-Guide.pdf?dl=0



Coaching



Coaching

 What can an instructor do to coach or mentor
students during a programming assignment?



Coaching

 What kinds of ”help” from an instructor
will lessen the students’ opportunities to
develop their own skills?



Evaluation (Grading)



Evaluation

 What can an instructor doing when
evaluating a student’s performance to
help them improve their abilities?



Evaluation

 What should an instructor not do during
evaluation?



Summary


