
JeroMF
A Software Development Framework for Building

Distributed Applications Based on Microservices and
JeroMQ

Stephen W. Clyde
Utah State University

Oct. 28, 2019



Motivation

• Distributed applications are pervasive in today’s connected world.

• They can be hard to design, implement, test, deploy, scale, extend, and
maintain.

• Service-oriented architectures showed some promise for distributed
applications, but applications were still hard to implement, test, deploy,
scale, extend, and maintain.
– Simply splitting an application into multiple independent services can generate

more artifacts to manage without necessarily obtaining testability, easier
deployment, scalability, etc.

– In fact, a haphazard refactoring of a distributed application into services may
create more complexity.



Problem Statement

Create an open-source framework for distributed applications based on
Microservices and using broker-less inter-process communications that

– Makes it easier for developers to create secure and reliable distributed applications

– Is flexible, extensible, and scalable

– Can be used for distributed applications running on heterogenous platforms

– Supports operational tools for managing distributed applications at runtime

Open-source Framework

Distributed Application (Microservices)

Host Device

OS

Broker-less Inter-process Communications (Messaging)

Host Device

OS

Host Device

OS

Host Device

OS

Host Device

OS



Overview

• The Microservice Architecture Style

• Underlying Technology

• Architectural Overview of JeroMQ

• Sample Application

• JeroMF Processes

• JeroMF Services

• JeroMF Communication

• Extension Points

• Evaluation Through Use in Real-world Applications

• Conclusion



The Microservices Architectural Style

A
P

I
Business

Logic

Database



The Microservices Architectural Style

A
P

I
Business

Logic

Database

Microservice



The Microservices Architectural Style

A
P

I
Business

Logic

Database

An interface
through which
others use the
Microservice



The Microservices Architectural Style

A
P

I
Business

Logic

Database

The microservice’s
logic, which in turn

might use other
microservices



The Microservices Architectural Style

A
P

I
Business

Logic

Database
An encapsulated
persistent store for
objects required

by the
microservice



Characteristics of the
Microservices Architectural Style

• Good modularity
– Highly cohesive: each microservice should have a single responsibility

– Loosely coupled: dependencies should be restricted to microservice API’s and
documented semantics

– Localization of design decisions: individual design decisions should be encapsulated in
one place. The microservices should encapsulate significant design decisions in place
one.

– Modular reasoning: A developer should be able to understand a microservice’s
functionality by looking at just its implementation.

• Good abstraction and encapsulation

• Testable and Maintainable

• Scalable

• Independently Deployable



Underlying Technology

• Communication Needs
– Efficient and scalable

– Reliable and secure

– Widely available on all common computing platforms

– Support for synchronous and asynchronous communications

– Doesn’t require intermediate processes (i.e., No brokers or message servers)

• Security Needs
– Support for asymmetric and symmetric algorithms

– Widely available on all common computing platforms

• Choices
– ZeroMQ as a messaging library

– BouncyCastle for encryption of application-level communications



ZeroMQ (and JeroMQ)

• ZeroMQ: A message library; not a
messaging system
– High-performance

– Easy to use

– Scalable

– Supports true asynchronous communications

– Ported to over 40 languages

• Supports multiple transportation layer protocols
– Transmission Control Protocol (TCP)

– Inter-process (Pipes)

– Inter-thread (In-process communications)

• JeroMQ is a native Java port of ZeroMQ

• See http://zeromq.org and https://github.com/zeromq/jeromq-jms



Bouncy Castle Crypto API

• Lightweight cryptography API for Java
and C#

• A provider for the Java Cryptography
Extension (JCE) and the Java
Cryptography Architecture (JCA)

• Support for wide range of crypto
algorithms.

• The Bouncy Castle Crypto APIs are maintained by an Australian Charity,
the Legion of the Bouncy Castle Inc.

• See http://bouncycastle.org



Initial Goals for JeroMF

• Make it easy for developers to
– Setup containers (processes) of microservices

– Manage service configurations

– Create custom services

– Define and implement reliable application-level communication protocols

– Authenticate services and encryption application-level communications

– Track service load and communication statistics

– Test services and inter-service communications

• It should also allow operators to
– Gracefully startup and shutdown services

– Monitor the status of the services in a distributed application



JeroMF: Architectural Overview



Sample Application

Used-car Server

Used-car Service

Get Cars

Get Car Price

Dealer Host Machine

User Interface

End User’s Device

Dealer
Inventory

Get Car
Implementation

Get Car Price
Implementation



JeroMF Processes

• A JeroMF process
– Is a container for one or more microservices

– Holds process-level information, e.g. Session values and Settings

– Does not need to be run on an application server or container platform

– Can run on any platform with a JVM, including mobile devices

Host Device

JeroMF
Process

Host Device

JeroMF
Process

Host Device

JeroMF
Process



JeroMF Processes

• A JeroMF process
– Inherits from BaseProcess

– Is a container for one or more
microservices (BaseService)

– Holds process-level information,
i.e., Session and Settings

– Uses a template method
pattern to ensure that it is
“open for extension but closed
to modification”

– Does not need to be run on an
application server or container
platform

– Can run on any platform with a
JVM, including mobile devices



public class UsedCarServer extends BaseProcess {
public static void main(String[] args){
UsedCarServer process=new UsedCarServer();
try {
process.initialize(args,"server.config");
UsedCarService service =

new UsedCarService(instance.getSession(),"UsedCarsService");
process.addService(service);
process.run();

}
catch (Exception e) {e.printStackTrace(); }
finally { process.cleanup(); }

}

@Override
protected Settings createSettings() {
return new UsedCarSettings();

}
}

JeroMF Processes



JeroMF Services

• They use a
template
method pattern
to ensure
extensibility
through
specialization

• BaseServices are microservices
– Without a network interface
– Can contain business logic
– Can have connection to a persistent dataset

• ZmqServices add to this the ability to
– Have network-accessible API’s
– Communicate with other services

• All JeroMF Services are active objects



ZmqServices



public class UsedCarService extends ZmqService {

UsedCarService(Session session, String serviceName) throws ServiceException {
super(session, serviceName);

}

@Override
protected void initialize() throws ServiceException {
super.initialize();
apiResponder.addMessageHandler(ListCars.class,

EncryptionMode.None,
EncryptionMode.None,
msg -> listCars());

apiResponder.addMessageHandler(GetCarPrice.class,
EncryptionMode.None,
EncryptionMode.None,
msg -> getCarPrice(msg));

}

private Message listCars(){ … }
private Message getCarPrice(Message request){ … }
}

JeroMF Service



JeroMF Communicators



Messages

• JeroMF includes a
number of standard
messages
– For registering services

– For monitoring services

– For system operations

• JeroMF allows developers
to defined their own
application specific
messages by
– Specializing Message

– Defining its serialization



Service Registry

A
P

I

Business
Logic

Database

Registry

• The Registry is a JeroMF process

• It is contains a microservice with
the following capabilities
– Authenticate a service and register it

with its public key and API’s

– Assign a service a symmetric key

– Look up a service’s public key

– Look up a service’s API’s

• It can gracefully shutting down of
a distributed application

• It can periodically require
microservice’s to reauthenticate

• Its use optional



Some Useful Extension Points

• JeroMF processes can contains one or more services, a custom session
object, and a custom settings object.

• JeroMF services allow developers to implement all message handlers,
business logic, and service synchronization through encapsulated and
testable methods.

• JeroMF allows developers to create new kinds of communicators to
support custom communication protocols.

• JeroMF allows developers to define and implement virtually any kind of
messages



Evaluation of JeroMF Through Use in Real-world
Distributed Applications

• As an initial case study, JeroMF was used to re-design and re-implement
the Sync Facility of Utah’s Child Health Advanced Record Management
System.

• The Sync Facility monitor changes to various health-care database.

• When changes occur, dependent on the type of change, it may
– Add or update a child identities in CHARM

– Cause the re-matching of records across all connected databases

– Generate or recall alerts

– Publish changes and alerts to various data consumers

• Its redesign, resulted in 16 different services hosted in 9 processes, not
counting the registry



Evaluation of JeroMF Through Use in Real-world
Distributed Applications

• The developers reported that
– Designing the system bases on single-responsibility microservice was easy in some

areas, but challenging in others.

– Achieving tight cohesion doesn’t always come naturally.

– Each service was relative easy to implement; JeroMF took care of the distribution
details.

– Testing each service was relative easy, since only the setup and business logic
needed to be tested.

– The reliability provided by the new Sync Facility is better than in the old version.

– The security in the new Sync Facility is better than in the old version

– The developers added service-level authentication and encrypted communications at the
application level, with virtual no extra effort.

– Deploying the new Sync facility is easier than the old version.



Future Work

• Other BaseService specializations to support other different messaging
libraries:
– HttpService

– JmsService

• Extensible services that will act as request proxies and load balancers.

• Improved deployment and scalability features

• Empirical studies and qualitative analyses that will more rigorously
evaluate its utility, reusability, extensibility, scalability, security, reliability,
and maintainability.

• The tracking of software problem reports, time to resolution, induced
errors from bug fixes, etc.



Conclusion

• So far, our experience with JeroMF has been positive
– BaseProcess makes it easy to define new service containers.

– ZmqService makes it easy to create custom microservices that can implement
diverse and sophisticated functionality.

– The predefined Communicator and Message classes allow developers to implement
common styles of communication.

– They also provide excellent starting points for implementing application-specific
communication protocols.

– It easy for developers to use either asymmetric or symmetric encryption.

– The optional Registry process can act like a key store for the public keys of registered
services, simplifying key management.

• We would welcome collaborators who would like to help refine and
expand JeroMF



Questions?


