JeroMF

A Software Development Framework for Building
Distributed Applications Based on Microservices and
JeroMQ

—

Stephen W. Clyde
Utah State University

Oct. 28, 2019

Motivation

R e .
 Distributed applications are pervasive in today’'s connected world.

* They can be hard to design, implement, test, deploy, scale, extend, and |
maintain. o

 Service-oriented architectures showed some promise for distributed
applications, but applications were still hard to implement, test, deploy,
scale, extend, and maintain.
- = Simply splitting an application into multiple independent services can generate

more artifacts to manage without necessarily obtaining testability, easier
deployment, scalability, etc.

— In fact, a haphazard refactoring of a distributed application into services may
create more complexity.

Problem Statement

P
Create an open-source framework for distributed applications based on
Microservices and using broker-less inter-process communications that
— Makes it easier for developers to create secure and reliable distributed applications
— Is flexible, extensible, and scalable
— Can be used for distributed applications running on heterogenous platforms
— Supports operational tools for managing distributed applications at runtime

Distributed Application (Microservices)
Broker-less Inter-process Communications (Messaging)

Overview

* The Microservice Architecture Style
« Underlying Technology
» Architectural Overview of JeroMQ

Sample Application
JeroMF Processes

JeroMF Services

JeroMF Communication
Extension Points

Evaluation Through Use in Real-world Applications

Conclusion

The Microservices Architectural Style

Business I. >

Logic

|

The Microservices Architectural Style

Microservice

Business I. i

Logic

|

The Microservices Architectural Style

Business I.

Logic

An interface

through which Database
others use the
Microservice |

The Microservices Architectural Style

The microservice's
logic, which in furn
might use other
microservices

The Microservices Architectural Style

Business
Logic

An encapsulated
persistent store for |
objects required

by the
microservice

Characteristics of the
Microservices Architectural Style

« Good modularity
— Highly cohesive: each microservice should have a single responsibility

— Loosely coupled: dependencies should be restricted to microservice API's and
documented semantics

— Localization of design decisions: individual design decisions should be encapsulated in
one place. The microservices should encapsulate significant design decisions in place
one.

— Modular reasoning: A developer should be able to understand a microservice's
functionality by looking at just its implementation.

~ *» Good abstraction and encapsulation
- Testable and Maintainable
* Scalable

* Independently Deployable

Underlying Technology

« Communication Needs
— Efficient and scalable
— Reliable and secure i
— Widely available on all common computing plaftforms
— Support for synchronous and asynchronous communications
— Doesn’t require intermediate processes (i.e., No brokers or message servers)

» Security Needs
— Support for asymmetric and symmetric algorithms
— Widely available on all common computing platforms

.~ » Choices
— ZeroMQ as a messaging library
— BouncyCastle for encryption of application-level communications

/eroMQ (and JeroMQ)

- ZeroMQ: A message library; not a .
messaging system
— High-performance i
— Easy to use o . ingle
— Scalable
ho —

— Supports frue asynchronous communications
— Ported to over 40 languages

-« Supports multiple transportation layer protocols
- — Transmission Control Protocol (TCP)
— Inter-process (Pipes)
— Inter-thread (In-process communications)

« JeroMQ is a native Java port of ZeroMQ
e See hiip://zeromqg.org and https.//qithub.com/zeromg/jeromg-jms

Bouncy Castle Crypto AP

 Lightweight cryptography API for Java
and C#

« A provider for the Java Cryptography
Extension (JCE) and the Java
Cryptography Architecture (JCA)

» Support for wide range of crypto
- algorithms.

~ + The Bouncy Castle Crypto APIs are maintained by an Australian Charity,
the Legion of the Bouncy Castle Inc.

» See http://bouncycastle.org

Initial Goals for JeroMF

* Make it easy for developers to
— Setup containers (processes) of microservices
— Manage service configurations
— Create custom services
— Define and implement reliable application-level communication protocols
— Authenticate services and encryption application-level communications
— Track service load and communication statistics
— Test services and inter-service communications

o

* |t should also allow operators to
— Gracefully startup and shutdown services
— Monitor the status of the services in a distributed application

JeroMF: Architectural Overview

Pras—— T aae—.

process services communicators

Settings

1
1 BaseService Comminterface
Session

1

4 1 4

BaseProcess ZmgqgService Communicator

Sample Application

Get Car
Implementation

Get Car Price
Implementation

Dealer
Inventory

Get Cars

Get Car Price

JeroMF Processes

* A JeroMF process

- —Is a container for one or more microservices

— Holds process-level information, e.g. Session values and Settings

— Does not need to be run on an application server or container platform

— Can run on any platform with a JVM, including mobile devices !

L.
S

JeroMF Processes

Setti <<Interface>> | g ________
+Settings() = Rr:I::laa;Iee < ' ¢ A JerOMF process
load i : Stri : void g
s rrsetarns « St e neyivel A — Inherits from BaseProcess
+getKeyPairName() : String i

|

1

+getPrivateKeyPassword() : String :
+getDbUsername() : String "
|

microservices (BaseService)

+getDbPassword() : String

J — |Is a container for one or more

]

Base Service o . .
| 1 -serviceName : String I : — !‘lOldS prQCGSS-|eV6| II:]fOFmGTIOH,
“‘ ~dbConnection : Connection N | l.e., Session and Seftfings
h 3 | +BaseSerVIce(se_55|on., name) . i
Session Igf;sl)e%%%non::;Icc;?c?ni)siggc?m0n : — Usesa TemplOTe meThOd
+getName() : String < cuses||Fstart0 : void e : pattern to ensure that it is
+getZmgContext() : ZmgContext +stop() : void . L .
+getPrivateKey() : PrivateKey <---- #initialize() : void : Open for eXTenSIOI’) bUf Closed
PublicKey() : PublicK #doS hing(: void | £y -
Igﬁipﬂbd&g(keyﬁan'fe :e‘s(tring) - PublicKey #dgsgm:\tlv;:\?t?ng()v? void | tfo modification”
+getProcessStatus() : RuntimeStatus #cleanup() : void wnt | il DOGS no_l_ need _I_O be runN onN an
1 1o . o o .
i : application server or container
2 i platform
BaseProcess 1 i .
+addSer\{ice(se_rvice . Bas_eService):void - ! _ an run on Ony p|o‘|‘form W|'|'h q
+getServices() : BaseService[] I . . g 0
+run(: void | JVM, including mobile devices
#initialize(args : String[], settingsResourceName : String) : ...[|~ "~~~ "~~~ -~ -~~~ ~~-~°7°

JeroMF Processes

public class UsedCarServer extends BaseProcess {
public static void main(String[] args){
UsedCarServer process=new UsedCarServer();
try {
process.initialize(args,"server.config”);
UsedCarService service =
new UsedCarService(instance.getSession(),"UsedCarsService");
process.addService(service);
process.run();
}
catch (Exception e) {e.printStackTrace(); }
finally { process.cleanup(); }

}

@Override
protected Settings createSettings() {
return new UsedCarSettings();

)
}

Base Service

-serviceName : String
-dbConnection : Connection

+BaseService(session, name)
+getDbConnection() : Connection
+closeDbConnection() : void
+start() : void

+stop() : void

#initialize() : void
#doSomething() : void
#doSomeWaiting() : void
#cleanup() : void

i

Zmq Service fem plOTe
-keyName : String Communicator
-apiEp : String . |[+start0 method pOTTern
publicApiEp .°0" Istotp'? ds for sending and receiving Messages TO ensure
+getRegistration() : Registration merhods for sendi i T
+setRegistration(registration : Registration) +getStatus(: RuntimeStatus eXTenSIb”ITy
+getStatus() : RuntimeStatus fhrough

JeroMF Services

* BaseServices are microservices

— Without a network interface
— Can contain business logic
— Can have connection to a persistent dataset

« /mqgServices add to this the ability to
— Have network-accessible API's
— Communicate with other services

| IIL

« All JeroMF Services are active objects

* They use a

specialization

/magservices

Pra=——us e W
_qu Service Communicator
_keyNarne : String) - +start()
—ap|E|? : St.rlng - +stop()
-publicApiEp & +methods for sending and receiving Messages S
+getRegistration() : Registration <<uses> |[T9etStatus(: RuntimeStatus F
+setRegistration(registration : Registration) [| ----------
+getStatus() : RuntimeStatus !
|
TR N 1 .
I
0..1 \/ -
Registration Requester Responder Command ——
-id : int Responder
-secretKey : byte[]
0..1 0..1
/\
<<create>> :
1
Registration Client

JeroMF Service

public class UsedCarService extends ZmqgService {

UsedCarService(Session session, String serviceName) throws ServiceException {
super(session, serviceName);

}

@Override
protected void initialize() throws ServiceException {
super.initialize();
apiResponder.addMessageHandler(ListCars.class,
EncryptionMode.None,
EncryptionMode.None,
msg -> listCars());
apiResponder.addMessageHandler(GetCarPrice.class,
EncryptionMode.None,
EncryptionMode.None,
msg -> getCarPrice(msq));

}

private Message listCars(){ ... }
private Message getCarPrice(Message request){ ... }

}

JeroMF Communicators

HandlerDefinition Registration
-incomingEncryptionMode : EncryptionMode Client
-handler : Function<Message, Message>
-outgoingEncryptionMode : EncryptionMode 47
Requester
0.* Dictionary by Message Type
Responder
i\
Communicator PassiveRequester
+start()
| +stop() Active Responder
+various message send and receive methods <
+getStatus() : RuntimeStatus
Command
Responder
Router

» JeroMF includes a
number of standard
MeSsSages
— For registering services
— For monitoring services
— For system operations

« JeroMF allows developers
to defined their own
application specific
messages by
— Specializihg Message
— Defining its serialization

Messages

]

messages

GetPublicServices

PublicServices

GetStatus

V

Message

/AN

Status

Reset

Shutdown

Heartbeat

RegisterRequest

RegisterReply

Service Registry

* The Registry is a JeroMF process

It Is contains a microservice with
the following capabilities

— Authenticate a service and register it
with its public key and API’s

— ASssign a service a symmetric key
— Look up a service's public key Business
— Look up a service's API’s Logic

* It can gracefully shutting down of
- adistributed application
_ « It can periodically require

microservice's to reauthenticate

* |ts use optional

Some Useful Extension Poinfts

« JeroMF processes can contains one or more services, a custom session
object, and a custom settings object.

« JeroMF services allow developers 1o implement all message handlers,
business logic, and service synchronization through encapsulated and

testable methods.
« JeroMF allows developers to create new kinds of communicators to
support custom communication protocols.

- » JeroMF allows developers to define and implement virtually any kind of
~ _messages

Evaluation of JeroMF Through Use in Real-world
Distributed Applications

~+ As an initial case study, JeroMF was used to re-design and re-implement
the Sync Facility of Utah's Child Health Advanced Record Management
System.

o

* The Sync Facility monitor changes to various health-care database.

- *» When changes occur, dependent on the type of change, it may
— Add or update a child identities in CHARM

— Cause the re-matching of records across all connected databases

— Generate or recall alerts

— Publish changes and alerts to various data consumers

* Its redesign, resulted in 16 different services hosted in ? processes, not
. counting the registry

Evaluation of JeroMF Through Use in Real-world
Distributed Applications

P e, Y
« The developers reported that

— Designing the system bases on single-responsibility microservice was easy in some
areqas, but challenging in others.

— Achieving tight cohesion doesn’t always come naturally. |
— Each service was relative easy to implement; JeroMF took care of the distribution '

details.

— Testing each service was relative easy, since only the setup and business logic
needed 1o be tested.

— The reliability provided by the new Sync Facillity is better than in the old version.
— The security in the new Sync Facility is better than in the old version

— The developers added service-level authentication and encrypted communications at the
application level, with virtual no extra effort.

— Deploying the new Sync facility is easier than the old version.

Future Work

« Other BaseService specializations to support other different messaging
libraries:
— HttpService
— JmsService

Extensible services that will act as request proxies and load balancers.

Improved deployment and scalability features

Empirical studies and qualitative analyses that will more rigorously
evaluate its utility, reusability, extensibility, scalabllity, security, reliability,

and maintainabllity.

The tracking of software problem reports, time to resolution, induced
errors from bug fixes, etc.

Conclusion

« So far, our experience with JeroMF has been positive
— BaseProcess makes it easy to define new service containers.

— /mqService makes it easy to create custom microservices that can implement
diverse and sophisticated functionality. -~

— The predefined Communicator and Message classes allow developers to implement
common styles of communication.

— They also provide excellent starting points for implementing application-specific
communication protocols. —

— |t easy for developers to use either asymmetric or symmetric encryption.

- — The optional Registry process can act like a key store for the public keys of registered
services, simplifying key management.

-« We would welcome collaborators who would like to help refine and
expand JeroMF

Questions?

- /

