
计算机学院

1计算机学院 1

Code-level Optimization for Program Energy

Consumption Tools

1

Cuijiao Fu, Depei Qian, Tianming Huang, Zhongzhi Luan

fucuijiao@buaa.edu.cn

School of Computer Science and Engineering

Beihang University

计算机学院

2计算机学院 2

Outline

� Introduction

� Methodolgy

� Optimization for dead writes

� Experiment

� Conclusion

� References

计算机学院

3计算机学院 3

Introduction
� As power and energy consumption are becoming one of the
key challenges in the system and software design, several
esearchers have focused on the energy efficiency of
hardware and embedded systems

� In the era where processor to memory gap is widening
[4][5], gratuitous accesses to memory are a cause of
inefficiency, wasting so much energy, especially in large
data centers or HPC running complex scientific
calculations

� Therefore, the optimization of program memory access can
bring about significant effects on energy consumption
reduction

计算机学院

4计算机学院 4

Introduction
� Duo to the complexity of the computer system when
the program is running and the uneven level of the
developer, it is difficult to modify the program code
for energy optimization

� We found that there are a lot of redundant memory
accesses in common programs, and the energy waste
they cause cannot be eliminated by resource
allocation and scheduling

� We found it conveniently to analyze and record the
memory accesses during program execution by using
Pin

计算机学院

5计算机学院 5

Introduction
� We focused on the impact of dead write on program
energy consumption

� Our work mainly focuses on the following three
aspects

• 1) Locating dead writes exactly to the line in the source
code of programs

• 2) Analyzing and modifying the source code fragments
found in 1)

• 3) Measuring and comparing energy consumption of
programs before and after modification of dead writes

计算机学院

6计算机学院 6

Methodology
� Dead write, which means two writes to the same
memory location without an intervening read operation
make the first write to that memory location dead

� This definition gives us a way to reduce energy
consumption of programs by optimizing programs'
memory access codes

计算机学院

7计算机学院 7

Dead Write
� For every used memory address, building a state
machine based on the access instructions.

� The state machine state is changed to initial mark V
(Virgin) for each used memory address, indicating that
no access operation is performed, and when an access
operation is performed, the state is set to R (Read)
according to the type of operation. Or W (Write).
According to access to the same address, the state
machine implements state transitions

计算机学院

8计算机学院 8

Dead Write
� The following two cases will be judged to be dead write:

• 1) A state transition from W to W corresponds to a dead
write

• 2) At the end of the program, the memory address in the
W state, meaning that the program did not read it until
the end of the operation

Figure 1 State transition of dead write diagram.

计算机学院

9计算机学院 9

Finding dead writes in source lines

� Developing a tool based on CCTLib, a library uses Pin
to track each program instruction, and builds dynamic
calling context tree (CCT) [9] with the information of
memory access instructions

� Each interior node in our CCT represents a function
invocation; and each leaf node represents a write
instruction. After the program is executed, each dead
write will be presented to the user as a pair of CCT
branches

计算机学院

10计算机学院 10

Optimization for dead writes
� There are many causes of dead writing

• For example, Figure 2 is the simplest scenario because of
the repeated initialization of an array. in this figure, the
function Bar () and function Foo () initializes the array a
separately before the function Foo1 () reads it

1 #define N (0xfffff)

2 int a[N]

3 void Foo() {

4 int i;

5 for (i=0; i<N; i++) a[i] = 0;

6 }

7 void Bar() {

8 int i;

9 for (i=0; i<N; i++) a[i] = 0;

10 }

11 void Foo1() {

12 int i;

13 for (i=0; i<N; i++) a[i] = a[i];

14 +1;

15 }

16 int main() {

17 Foo();

18 Bar();

19 Foo1();

20 return 0;

21 }

Figure 2. A simple example for dead write

计算机学院

11计算机学院 11

Optimization for dead writes
� We analyze two complex situations of the gcc
benchmark in SPEC CPU2006 [11]

• For 403.gcc, after testing each input, it was found that for
the input c-typeck.i, the dead write is very large,
accounting for 73% of the total amount of memory
accesses 1 void loop_regs_scan (struct loop * loop,

...)

2 {...

3 last set=(rtx *) xcalloc (-regs>num,

4 sizeof (rtx));

5 /*register used in the loop*/

6 for (each instr in loop) {

7 ...

8 if(MATCH(ATTERN (insn))==SET || ...)

9 count_one_set ...(, last_set, ...);

10 ...

11 if(block is end)

12 memset (last_set, 0, regs->num

13 *sizeof(rtx));

14 }...

15 }

Figure Ⅲ. Dead writes in gcc due to an inappropriate data structure

计算机学院

12计算机学院 12

Methodolgy

� It was found through sampling that in the 99.6% case,
only 22 different elements per cycle would be written
with a new value

� The optimization scheme is:

• We maintain an array of 22 elements to record the
index of the modified element of the last_set.
Reseting only the elements of the subscript stored in
the array when the reset is cleared. Reseting the
entire 132KB array if the encounter array is
overflow, then call memset () at the end of the period
to reset the entire array.

计算机学院

13计算机学院 13

Methodolgy
� Another dead write context was found in cselib_init (). As
shown in Figure 4, the macro VARRY_ELT_LIST_INIT ()
allocates an array and initializes to 0. Then the function
clear_table () initializes the array to 0 again, apparently
resulting in a dead write

� This implementation does not

initialize the array reg_values,

so this dead write could be

eliminated by changing the interface

1 void cselib_init () {

2 ...

3 cselib nregs = max reg num();

4 /*initializ reg_values to 0 */

5 VARRY_ELT_LIST_INIT (reg_values,

6 cselib_nregs, ...);

7 ...

8 clear_table (1);

9 }

10 void clear_table (int clear_all) {

11 /*reset all elements of reg_values to 0 */

12 for (int i = 0; i < cselib_nregs; i++)

13 REG_VALUES (i) = 0;

14 ...

15 }

Figure 4. Dead writes in gcc due to

excessive reset.

计算机学院

14计算机学院 14

Experiment

� We actually take the readings of the hardware
performance counters by sampling them while the
program is running

• Those readings are the input of the Power Model
[12] we had published in 2016

• The output of the model is the power of the whole
system.

• Obviously, time-based integration of power is
energy consumption

计算机学院

15计算机学院 15

Experiment environment

� We used PAPI [13] to get the readings of the hardware
performance counters and gcc to compile the programs
with option -g before they are analyzed by dead write
analysis tool

� Detailed hardware configuration of the experiment
platform is shown in Table I

� TABLE I. Hardware Configuration

Component Description

CPU 2.93GHz Intel Core i3

Memory 4GB DDR3 1333HZ

Hard Disk Seagate Barracuda 7200.12

Net 1000Mb/s Ethernet

计算机学院

16计算机学院 16

Calculation method

� We calculated full system power as the linear regression
of three kinds of readings of the hardware performance
counters according to performance Events

� As shown in Formula 1. The three kinds of performance
Events are Active Cycles, Instruction Retired and LLC
Misses

� The energy consumption of the test program can be
calculated using Formula 2 since energy is the integral of
power over time

�

Psystem=23.834+ActiveCycles+2.093×InstructionRetired+72.113 ×LLCMisses+47.675

Formula 1

Formula 2

计算机学院

17计算机学院 17

Experimental results

� Result: The average energy consumption is reduced by
13.46% TABLE I. Changes in energy consumption for gcc

Input Energy consumption (J) %Reduction

before after

166.i 141.65 128.48 9.3

200.i 207.34 203.2 2

c-typeck.i 182.37 137.69 24.5

cp-decl.i 133.36 115.76 13.2

expr.i 153.13 127.4 16.8

expr2.i 197.48 169.64 14.1

scilab.i 98.46 97.8 0.8

g23.i 254.07 219.26 13.7

s04.i 227.0 166.39 26.7

% Average 13.46

计算机学院

18计算机学院 18

Conclusions

� This paper proposes an optimization method for program
energy consumption

� The method is based on the optimization of dead write, a
widely-existing redundant memory access in the source
code. Finding out and eliminating the dead writes in
programs, which could increase system efficiency and
reduce energy consumption

� From the experimental results, the effect is significant

计算机学院

19计算机学院 19

Acknowledgment

� This research is supported by the National Key R&D
Program (Grant No.2017YFB0202202)

� Thanks to the organizers of the conference and the
anonymous reviewers of the paper

计算机学院

20计算机学院 20

References
[1]E. Capra, C. Francalanci, and S.A. Slaughter, “Is software green? Application
development environments and energy efficiency in open source applications”,
Information & Software Technology, vol. 54, no. 1, pp. 60–71, 2012.

[2]I. Manotas, L. Pollock, and J.Clause, “Seeds: a software engineer’s energy-
optimization decision support framework”, Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 503–514.

[3]P. Hicks, M. Walnock, and R. M.Owens, “Analysis of power consumption in memory
hierarchies”, International Symposium on Low Power Electronics and Design, 1997, pp.
239–242.

[4]B. Jacob, “The memory system: you can’t avoid it, you can’t ignore it, you can’t fake
it”, Synthesis Lectures on Computer Architecture, vol.4, no. 1, 2009, pp.1-15.

[5]S. A. Mckee, “Reflections on the memory wall”, in Conference on Computing
Frontiers, 2004, p. 162.

[6]R. Azimi, M.Badiei, X. Zhan, N. Li, and S. Reda, “Fast decentralized power capping
for server clusters”, in IEEE International Symposium on High Performance Computer
Architecture, 2017, pp. 181–192.

[7]C.K.Luk et.al, “Pin: building customized program analysis tools with dynamic
instrumentation”, 2005, pp.190–200.

计算机学院

21计算机学院 21

References
[8]M.Chabbi, and J. Mellor-Crummey, “Deadspy: a tool to pinpoint program
inefficiencies”, Proceedings of the Tenth International Symposium on Code
Generation and Optimization(CGO’12), pp. 124-134.

[9]M. Chabbi, X. Liu, and J. Mellor-Crummey, “Call paths for pin tools”, IEEE/ACM
International Symposium on Code Generation and Optimization, 2014, pp. 76–86.

[10]N. Nethercote and J. Seward, “How to shadow every byte of memory used by a
program”, International Conference on Virtual Execution Environments, 2007, pp.
65–74.

[11]J. L. Henning, “Spec cpu2006 benchmark descriptions”, ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[12]S. Yang, Z. Luan, B. Li, G. Zhang, T. Huang, and D. Qian, “Performance events
based full system estimation on application power consumption”, IEEE International
Conference on High Performance Computing and Communications, 2017, pp.749–
756.

[13]P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface to
hardware performance counters”, DoD Hpcmp Users Group Conference, 1999, pp.7–
10.

计算机学院

22计算机学院 22

Thank You!

The End

