COMPUTING WITH NANO-CROSSBAR ARRAYS

Mustafa Altun, PhD

Electronics \& Communication Engineering Istanbul Technical University

Web: http://www.ecc.itu.edu.tr/

Project Details

- Gathers globally leading research groups working on nanoelectronics and EDA
- Targets variety of emerging technologies including nanowire/nanotube crossbar arrays, magnetic switch-based structures, and crossbar memories
- Contributes to the construction of emerging computers beyond CMOS by proposing nano-crossbar based computer architectures.
- Budget: 724500 EURO
- Dr. Mustafa Altun, - Coordinator - Emerging Circuits and Computation Group, Istanbul Technical University, Turkey
- Dr. Dan Alexandrescu, IROC Technologies, Grenoble, France
- Dr. Lorena Anghel, TIMA Lab., Grenoble, France
- Dr. Valentina Ciriani, ALOS Lab., University of Milan, Italy.
- Dr. Csaba A. Moritz, Nanoscale Computing Fabrics Lab., University of Massachusetts, USA
- Dr. Kaushik Roy, Nanoelectronics Research Lab., Purdue University, USA
- Dr. Georgios Sirakoulis, Department of Electrical and Computer Engineering, Democritus University of Thrace, Greece
- Dr. Mircea Stan, High-Performance Low-Power Lab., University of Virginia, USA
- Dr. Mehdi B. Tahoori, Dependable Nano-Computing Group, Karlsruhe Institute of Technology, Germany

NANOxCOMP

Synthesis and Performance Optimization of a Switching Nano-Crossbar Computer

UNIVERSITÀ DEGLI STUDI DI MILANO

Project Details

Project Details

Two-terminal vs. Four-terminal

| CMOS transistor | |
| :---: | :--- | :--- |
| Control | Two-terminal switch |

Two-terminal vs. Four-terminal

Shannon's work: A Symbolic Analysis of Relay and Switching Circuits(1938)

Parallel: $x_{1}+x_{2}$

Series: $x_{1} . x_{2}$

Two-terminal vs. Four-terminal

What are the Boolean functions implemented in (a) ad (b)?

Logic Synthesis

Diode/Memristor-based Model

Diode/Memristor-based Model

Example: Implement the Boolean function $f=A+B$ with diode based nanoarrays.

Diode-resistor logic

Diode/Memristor-based Model

Example: Implement the Boolean function $f=\boldsymbol{A} \boldsymbol{B}$ with diode based nanoarrays.

Diode-resistor logic

Diode/Memristor-based Model

Example: Implement the Boolean function $f=\boldsymbol{A} \boldsymbol{B}+\boldsymbol{C D}$ with diode based nanoarrays.

FET-based Model

From Snider, G., et al., (2004). CMOS-like logic in defective, nanoscale crossbars. Nanotechnology.

FET-based Model

Example: Implement the Boolean function $f=A^{\prime}$ with FET based nanoarrays using CMOS-like logic.

FET-based Model

Example: Implement the Boolean function $f=(\boldsymbol{A} \boldsymbol{B}+\boldsymbol{C D})^{\prime}$ with FET based nanoarrays using CMOS-like logic.

Four-terminal Switch-based Model

$3 \times 32 \mathrm{D}$ switching network and its lattice form

Four-terminal Switch-based Model

\square Switches are controlled by Boolean literals.
$\square f_{L}$ evaluates to 1 iff there exists a top-to-bottom path.
$\square g_{L}$ evaluates to 1 iff there exists a left-to-right path.

Logic Synthesis Problem

How can we implement a given target Boolean function f_{T} with a lattice of four-terminal switches?

Logic Synthesis Problem

Example: $f_{T}=x_{1} x_{2} x_{3}+x_{1} x_{4}+x_{1} x_{5}$

Synthesis Method

Example: $f_{T}=x_{1} x_{2} x_{3}+x_{1} x_{4}+x_{1} x_{5} \quad \mid f_{T}^{D}=\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+x_{4}\right)\left(x_{1}+x_{5}\right)$

- Start with f_{T} and its dual.
- Assign each product of f_{T} to a column.
- Assign each product of $f_{T}{ }^{D}$ to a row.
- Compute an intersection set for each site.
- Arbitrarily select a literal from an intersection set and assign it to the corresponding site.

Experimental Results

Implementation of $f_{\text {xor2 }}$ with different nanocrossbar types

a)

c)
b)

d)

Experimental Results

Type	Array Size Formulas
Diode	(number of products in $\boldsymbol{f}) \times$ ("number of literals in $\boldsymbol{f} "+$ 1)
FET- CMOS	(number of literals in $\boldsymbol{f}) \times$ ("number of products in $\boldsymbol{f} "$ + "number of products in $\left.f^{D "}\right)$
Four- terminal	(number of products in $\boldsymbol{f}) \times$ (number of products in $\left.f^{D}\right)$

Benchmark	FET-CMOS	Diode	4-Terminal	Optimal 4-Terminal
Dc1 2	72	36	16	$\mathbf{1 2}$
Dcl 5	35	15	12	$\mathbf{6}$
Dc1 6	36	18	9	$\mathbf{6}$
Ex5 31	156	104	32	$\mathbf{2 4}$
Ex5 33	110	77	21	$\mathbf{2 1}$
Ex5 46	81	54	18	$\mathbf{1 8}$
Ex5 49	72	54	12	$\mathbf{1 2}$
Ex5 50	81	63	14	$\mathbf{1 4}$
Ex5 61	64	48	12	$\mathbf{1 2}$
Ex5 62	49	35	10	$\mathbf{1 0}$
Misex1 1	48	16	8	$\mathbf{8}$
Misex1 2	132	55	35	$\mathbf{1 5}$
Misex1 3	156	60	40	$\mathbf{2 4}$
Misex1 4	121	44	28	$\mathbf{1 6}$
Misex1 5	90	45	25	$\mathbf{1 5}$
Misex1 6	143	66	42	$\mathbf{1 8}$
Misex1 7	81	36	20	$\mathbf{1 5}$
Mp2d 4	345	75	90	$\mathbf{2 4}$
Newtag	108	72	32	$\mathbf{1 8}$

Defect/Fault Tolerance

Defect/Fault Tolerance

Nano-Crossbar Array

Permanent Faults occur mostly in fabrication and are tolerated in post-fabrication by redundancy and reconfigurability (mapping).
Transient Faults occur in field and are tolerated by redundancy

Defect/Fault Tolerance

\square Defect tolerance is achieved by realizing a target logic function on a defective crossbar using row and column permutations
\square For the worst-case, N!M! permutations are required to find a successful mapping for NXM crossbar.
\square Defect-unaware algorithms aim to find the largest possible kXk defect-free sub-crossbar from a defective NXN crossbar where $\mathrm{k} \leq \mathrm{N}$;
\square Defect-aware considers the defect characteristics (stuck-at-0 or stuck-at-1), then decide which switch to employ during the mapping.

Technology Development for FET/Diode/Memristor based Arrays

Technology Development for FourTerminal Switch based Arrays

How about the technology?

\square We propose CMOS-compatible technology with TCAD simulations
\square By fitting the TCAD data to the standard CMOS current-voltage equations, we develop a Spice model of a four-terminal switch
\square We are currently working toward the fabrication.

Device Structures

1: Diffusion region
2: Gate electrode
3. Gate insulator region

4: Local Oxidation of Silicon (LOCOS) or Shallow Trench Isolation (STI) layers
5: Bulk layer

Device Structures

1: Diffusion region
2: Gate electrode
3. Gate insulator region

4: Local Oxidation of Silicon (LOCOS) or Shallow Trench Isolation (STI) layers
5: Bulk layer

Device Structures

1: Diffusion region
4: Local Oxidation of Silicon (LOCOS) or Shallow Trench Isolation (STI) layers
5: Bulk layer

Emerging Circuits and Computation Group

 Web: http://www.ecc.itu.edu.tr/
THANK YOU!

