

Department of Engineering Ferrara

ON CHIP PHOTONIC INTERCONNECTIONS: WIRED AND WIRELESS TECHNOLOGIES

Prof. Giovanna Calò, Politecnico di Bari Prof. Gaetano Bellanca, University of Ferrara

Ring-Based Networks for On Chip Optical Interconnections: from device design to fabrication and final characterization

- IOPLab
- Describe our work on Optical Network on Chip (ONoC) from waveguide-based topologies to wireless solutions

 Describe our work on Optical Network on Chip (ONoC) from waveguide-based topologies to wireless solutions

- IOPLab
- Describe our work on Optical Network on Chip (ONoC) from waveguide-based topologies to wireless solutions

Outline

 Introduction and motivations for electrical NOC and ONoC

- IOPLab
- Describe our work on Optical Network on Chip (ONoC) from waveguide-based topologies to wireless solutions

Outline

 Introduction and motivations for electrical NOC and ONoC

- IOPLab
- Describe our work on Optical Network on Chip (ONoC) from waveguide-based topologies to wireless solutions

- Introduction and motivations for electrical NOC and ONoC
- PSE as fundamental building block for ONoCs

- IOPLab
- Describe our work on Optical Network on Chip (ONoC) from waveguide-based topologies to wireless solutions

- Introduction and motivations for electrical NOC and ONoC
- PSE as fundamental building block for ONoCs
- Simple network (GWOR).
 Problems and Performance Evaluation

- IOPLah
- Describe our work on Optical Network on Chip (ONoC) from waveguide-based topologies to wireless solutions

- Introduction and motivations for electrical NOC and ONoC
- PSE as fundamental building block for ONoCs
- Simple network (GWOR).
 Problems and Performance Evaluation
- Statistical Analysis

 Describe our work on Optical Network on Chip (ONoC) from waveguide-based topologies to wireless solutions

- Introduction and motivations for electrical NOC and ONoC
- PSE as fundamental building block for ONoCs
- Simple network (GWOR).
 Problems and Performance Evaluation
- Statistical Analysis
- Conclusions

The Starting Point of our investigations

• Our interest in Optical Network on Chip is dated 2010

 Every commercial manufacturer of High-Performance Processors was introducing products based on Multi-Core Architectures

Courtesy of Prof. D. Bertozzi – University of Ferrara

3 —

Multi-Core On-Chip Communication

The Communication Bottleneck

- SERIALIZATION of bus access requests
- Single outstanding transaction allowed
- If wait states are needed, everybody waits

A possible answer: Network-on-Chip (NoC)

- High heterogeneity/flexibility
 - Cores will operate at different frequencies, data widths and protocols
- High performance (bandwidth latency)
 - Many cores will want to communicate, simultaneously
- Short and structured wiring
 - Point-to-point, predictable routing

Courtesy of Prof. D. Bertozzi – University of Ferrara

1 —

NoC

Changing Technology? On-Chip Optical Links

- Power is Bandwidth × Length dependent
- Buffering, Receiving and Retransmitting
- Power-hungry and BW limited by pin count

ONoC

Courtesy of Prof. D. Bertozzi – University of Ferrara

On-Chip Optical Interconnections

- Power independent of Bitrate and Length
- Modulate/Receive high BW data stream once – no retransmit
- Almost seamless scaling to multi-chip systems
- Broadband switching fabric nearly free in power dissipation (scalability)

IOPLab

Network Proposals

Network Proposals

Photonic Crossbar

Blocking Switch

Passive Network

Folded Torus

Courtesy of Prof. D. Bertozzi – University of Ferrara

DP.

Network Proposals

All based on Ring Resonators

Blocking Switch

South

Passive Network

Folded Torus

Network Proposals

All based on Ring Resonators

Blocking Switch

Off Resonance

Passive Network

Folded Torus

Network Proposals

All based on Ring Resonators

Blocking Switch

Passive Network

Folded Torus

 Our background was in the development of Numerical Techniques for the Simulation of Optical Structures (FDTD, BPM, FEM, Transfer Matrix)

- Our background was in the development of Numerical Techniques for the Simulation of Optical Structures (FDTD, BPM, FEM, Transfer Matrix)
- In 2011 we were having two National Projects underway

- Our background was in the development of Numerical Techniques for the Simulation of Optical Structures (FDTD, BPM, FEM, Transfer Matrix)
- In 2011 we were having two National Projects underway

PHOTONICA (UniFE, PoliBA, UniSI)

Multi-domain activities (optics, electronics and computer science) on the design of ONoC

- Our background was in the development of Numerical Techniques for the Simulation of Optical Structures (FDTD, BPM, FEM, Transfer Matrix)
- In 2011 we were having two National Projects underway

PHOTONICA (UniFE, PoliBA, UniSI)

Multi-domain activities (optics, electronics and computer science) on the design of ONoC

SAPPHIRE (PoliMI, UniBO, UniFE)

- Our background was in the development of Numerical Techniques for the Simulation of Optical Structures (FDTD, BPM, FEM, Transfer Matrix)
- In 2011 we were having two National Projects underway

PHOTONICA (UniFE, PoliBA, UniSI)

Multi-domain activities (optics, electronics and computer science) on the design of ONoC

SAPPHIRE (PoliMI, UniBO, UniFE)

Development of a technological platform for Silicon-on-Insulator fabrications

• We decided to focus our activities on:

- Our background was in the development of Numerical Techniques for the Simulation of Optical Structures (FDTD, BPM, FEM, Transfer Matrix)
- In 2011 we were having two National Projects underway

PHOTONICA (UniFE, PoliBA, UniSI)

Multi-domain activities (optics, electronics and computer science) on the design of ONoC

SAPPHIRE (PoliMI, UniBO, UniFE)

- We decided to focus our activities on:
 - Design of ring-based PSE and optical networks for ONoC

- Our background was in the development of Numerical Techniques for the Simulation of Optical Structures (FDTD, BPM, FEM, Transfer Matrix)
- In 2011 we were having two National Projects underway

PHOTONICA (UniFE, PoliBA, UniSI)

Multi-domain activities (optics, electronics and computer science) on the design of ONoC

SAPPHIRE (PoliMI, UniBO, UniFE)

- We decided to focus our activities on:
 - Design of ring-based PSE and optical networks for ONoC
 - Fabrication of single PSE and small networks (through external foundries)

- Our background was in the development of Numerical Techniques for the Simulation of Optical Structures (FDTD, BPM, FEM, Transfer Matrix)
- In 2011 we were having two National Projects underway

PHOTONICA (UniFE, PoliBA, UniSI)

Multi-domain activities (optics, electronics and computer science) on the design of ONoC

SAPPHIRE (PoliMI, UniBO, UniFE)

- We decided to focus our activities on:
 - Design of ring-based PSE and optical networks for ONoC
 - Fabrication of single PSE and small networks (through external foundries)
 - Characterization of the fabricated devices

PSE for ONoC – Simulation Tools

- Photonic Switching Element based on Ring Topology
- Silicon on Insulator (SOI) Technology
 - SOI waveguides 480 \times 220 nm (h \times w)
 - Rings Radius = 18/20 µm
- Simulation Tools
 - FDTD for Device Analysis
 - S-Matrix for Circuit Level Modeling
 - The networks are modeled as an incremental composition of BLACK BOX described via the Scattering Matrix formalism

Fabricated SOI Chip with Micro-Ring Structures

Fabricated SOI Chip with Micro-Ring Structures

Fabricated SOI Chip with Micro-Ring Structures

Fabricated SOI Chip with Micro-Ring Structures

PSE for ONoC

PSE for ONoC

• 2 × 2 Photonic Switching Element – $R_1 = R_2 = 20 \ \mu m$

Port 2

13 💳

 Router with 4 Input and 4 output ports GWOR (Generic Wavelength routed Optical Router)

- Router with 4 Input and 4 output ports GWOR (Generic Wavelength routed Optical Router)
- Wavelength dependent routing achieved through the choice of different radii for rings R1 and R2

- Router with 4 Input and 4 output ports GWOR (Generic Wavelength routed Optical Router)
- Wavelength dependent routing achieved through the choice of different radii for rings R1 and R2

- Router with 4 Input and 4 output ports GWOR (Generic Wavelength routed Optical Router)
- Wavelength dependent routing achieved through the choice of different radii for rings R1 and R2

- IOPLab
- Resonance Duplication due to the fabrication process
 - Misalignment in the radii of $R1_A$ and $R1_B$ with respect to the design value (20 μ m)

• Resonance Duplication due to the fabrication process

- Misalignment in the radii of $R1_A$ and $R1_B$ with respect to the design value (20 μ m)

Resonance Duplication due to the fabrication process

- Misalignment in the radii of $R1_A$ and $R1_B$ with respect to the design value (20 μ m)

• Resonance Duplication due to the fabrication process

- Misalignment in the radii of $R1_A$ and $R1_B$ with respect to the design value (20 μ m)

- Resonance Duplication due to the fabrication process
 - Misalignment in the radii of $R2_A$ and $R2_B$ with respect to the design value (18 μ m)

• Resonance Duplication due to the fabrication process

• Misalignment in the radii of $R2_A$ and $R2_B$ with respect to the design value (18 μ m)

- Resonance Duplication due to the fabrication process
 - Misalignment in the radii of R2_A and R2_B with respect to the design value (18 μm)

GWOR - Output Port Measurements

16 —

R₂

- Resonance Duplication due to the fabrication process
 - Misalignment in the radii of $R2_A$ and $R2_B$ with respect to the design value (18 μ m)

Tuning by applying 4.42 V on $R1_B$

Tuning by applying 4.62 V on $R2_B$

GWOR - Measured Performance vs Modeling **IOP**

Transmittance (dB)

IOPLab

EAST OUT

NORTH OUT

λ1

R1

R2

(R1)

λ0 λ1 λ2

WEST IN

WEST OUT

NORTH IN

R2

(R1)

R2

EAST IN

- BER Evaluation Two dual configurations:
 - Single channel (10 Gbit/s)
 - 3-channels (3 × 10 Gbit/s) WDM

A. Parini et al., BER evaluation of a passive SOI WDM router, IEEE PTL 2013

Fotor 20

2

2

4 In – 4 Out Optical Router (GWOR)

- Performance of the GWOR Router
 - Switching capabilities and robustness with respect to crosstalk demonstrated
 - BER measurements (10 Gbt/s) show
 - Fabrication issues can compromise router performances
 - 7 dB penalty on the Through Path (Low Rejection)
 - Drop-driven paths robust with respect to fabrication issues

Application of the Sensitivity Analysis in Optics **IOP**

- Sensitivity Analysis can be used to investigate the impact of technological tolerances on the performance of complex circuitry
 - The aim of Sensitivity Analysis is to assess the relations existing between a set of input factors subject to some degrees of uncertainty, and the output(s) of a model
- Elementary Effect (Morris Technique)
 - The Elementary Effect is the influence of a given input factor x_i on the output f of the system

$$EE_{i}(\mathbf{x}) = \frac{f(x_{1}, x_{2}, \dots, x_{i} + \Delta x_{i}, x_{i+1} \dots x_{k}) - f(x_{1}, x_{2}, \dots, x_{i}, x_{i+1} \dots x_{k})}{\Delta x_{i}}$$

The statistical distribution of the elementary effects (defined as F_i) is obtained by randomly sampling N points in the space of variation of the input factors

Application of the Sensitivity Analysis in Optics **IOP**...

- The Sensitivity with respect to each parameter is measured through two quantities:
- Mean Value of F_i

$$\mu_i^* = \frac{1}{N} \sum_{1}^{N} \left| F_i \right|$$

- A high value of μ_i indicates an input variable with an important overall influence on the output
- Standard Deviation of F_i

$$\sigma_i = \sqrt{\frac{\sum_{i=1}^{N} \left(F_i - \mu_i^*\right)^2}{N}}$$

• A high value of σ_i indicates a factor involved in interaction with other factors or whose effect is nonlinear

- IOPLab
- Switching performance vs. variability of the rings resonances

Switching performance vs. variability of the rings resonances

 Device behavior described through S-Parameters

Switching performance vs. variability of the rings resonances

- Device behavior described through S-Parameters
- Input parameters: n_{eff} of the 8 rings

Switching performance vs. variability of the rings resonances

- Device behavior described through S-Parameters
- Input parameters: n_{eff} of the 8 rings
- Output: signal vs noise (interference from other channels) at each output

Switching performance vs. variability of the rings resonances

- Device behavior described through S-Parameters
- Input parameters: n_{eff} of the 8 rings
- Output: signal vs noise (interference from other channels) at each output

Channel Quality Factor (CQF) parameter

 Ratio between the power at the expected wavelength of a specific port and the power of the interfering wavelengths

- IOPLah
- Switching performance vs. variability of the rings resonances

- Device behavior described through S-Parameters
- Input parameters: $n_{\mbox{\scriptsize eff}}$ of the 8 rings
- Output: signal vs noise (interference from other channels) at each output

Channel Quality Factor (CQF) parameter

 Ratio between the power at the expected wavelength of a specific port and the power of the interfering wavelengths

North Output

South Output

$$CQF_{2} = S_{OUT}\left(\lambda_{2}\right) \cdot \frac{\int_{\lambda_{2}-3\sigma_{2}}^{\lambda_{2}+3\sigma_{2}} S_{OUT}\left(\lambda\right) d\lambda}{\int\limits_{B} S_{OUT}\left(\lambda\right) d\lambda}$$

 σ_i = 0.0340 μ m FWHM band for each carrier wavelength

Sensitivity Analysis for the GWOR

Switching performance vs. variability of the rings resonances

- Device behavior described through S-Parameters
- Input parameters: n_{eff} of the 8 rings
- Output: signal vs noise (interference from other channels) at each output

Channel Quality Factor (CQF) parameter

- Ratio between the power at the expected wavelength of a specific port and the power of the interfering wavelengths
- CQF gives an evaluation of both the finite rejection and of the detuning of the rings
 - $\sigma_i = 0.0340 \ \mu m$ FWHM band for each carrier wavelength

Sensitivity Analysis for the GWOR

South Output

$$CQF_{2} = S_{OUT}\left(\lambda_{2}\right) \cdot \frac{\int_{\lambda_{2}-3\sigma_{2}}^{\lambda_{2}+3\sigma_{2}} S_{OUT}\left(\lambda\right) d\lambda}{\int_{B} S_{OUT}\left(\lambda\right) d\lambda}$$

Rings' effective index normally distributed (mean value = nominal value) with variance 10^{-3}

- R1A and R1B crucial rings for the North-Out port (red bars)
- R2A and R2B have similar effects for the South-Out (green bars)
- East-Out port less influenced (non resonant path). Effects of detuning overwhelmed by those on North and South ports

- The effects of R1A and R1B is strong on the North-Out port
- The same happens for R2A and R2B for what concerns the South-Out port
- All of these rings influence also the quality of the East-Out port

A. Parini, G. Bellanca, Quant Electron (2015) 47: 3145. https://doi.org/10.1007/s11082-015-0168-4

Sensitivity Analysis for the GWOR

25 —

Rings' effective index normally distributed (mean value = nominal value) with variance 10⁻⁶

- The most affected output is now the East-Port
- The rings on the West to East path have the greatest impact
- R1A, R1B and R2A, R2B all have a small impact (in relative terms) on the drop paths

- The functionalities of the ports driven by the drop paths are less affected by the randomness of ring parameters
- The West-In to East-Out path is compromised
- Ring parameters variability strongly influence the switching efficiency

A. Parini, G. Bellanca, Quant Electron (2015) 47: 3145. https://doi.org/10.1007/s11082-015-0168-4

Sensitivity Analysis for the GWOR

Conclusions

- Optical Network for On-Chip Optical Interconnections
 - Motivations for using ONoC
 - Basic Switching elements (1 × 2 PSE and 2 × 2 PSE)
 - 4 In 4 Out Optical Network GWOR
 - Problems related to fabrication tolerances
 - Performance Evaluation
 - Sensitivity Analysis as effective tool to investigate critical parameters

Conclusions

IOPLab

- Optical Network for On-Chip Optical Interconnections
 - Motivations for using ONoC
 - Basic Switching elements (1 \times 2 PSE and 2 \times 2 PSE)
 - 4 In 4 Out Optical Network GWOR
 - Problems related to fabrication tolerances
 - Performance Evaluation
 - Sensitivity Analysis as effective tool to investigate critical parameters

Now ... Going wireless

... Optically ...

ON CHIP PHOTONIC INTERCONNECTIONS: WIRED AND WIRELESS TECHNOLOGIES

Prof. Giovanna Calò, Politecnico di Bari Prof. Gaetano Bellanca, University of Ferrara

Contacts: giovanna.calo@poliba.it, gaetano.bellanca@unife.it

- Introduction
- Design of on-chip integrated antennas
 - Plasmonic antennas
 - Antenna arrays
- Wireless link performance
 - Finite Difference Time domain simulations
 - Ray tracing simulations
 - Bit Error Probability

The WiNOT Project

- Wireless Networks through on-chip Optical Technology
- Italian National Project
- Starting date: December 2017
- 3 Universities Involved
 - Politecnico di Bari (Coordinator): design of optical antennas
 - University of Bologna: development of a ray-tracing tool to investigate the optical propagation inside the chip
 - University of Ferrara: network analysis and optimization. Measurements on fabricated devices
- Technological Partner
 - IIT Center for Biomolecular Nanotechnologies

The WiNOT Project

Design of Optical Antennas for Wireless Optical Connections

Development of a Ray-Tracing Simulator to investigate propagation in Complex Environments

> Network Analysis Optimization

Network performance with a single link

Network performance with multiple links

Performance evaluation and Optimization

Introduction

- Optical Interconnections on-chip proposed to have efficient communication between processors on the same die (ONoC)
 - Problems: footprint, layout complexity, signal loss and crosstalk due to multiple waveguide crossing
- RF Wireless Connections (WiNoC) investigated, to avoid multiple waveguide crossing
- Optical Wireless NoC (OWiNoC)
- All-Optical solution(Wired + Wireless) presenting some advantages
 - No transceivers
 - No latency (for optical-to-electrical conversion)
 - Bit transparency
 - Reduced power consumption

Wireless Optical Network on Chip

Propagation in homogeneous medium: the Friis formula

n: refractive index

d: distance of the link

 $P_t = 0 \text{ dBm} (1\text{mW}), P_r = -20 \text{ dBm}, A_0 \cong 82 \text{ dB} \Rightarrow$

⇒ OWiNoC applications need antennas with high gain

Antennas for Optical Wireless Network on Chip

Plasmonic Optical Antennas

- Problems
 - Directivity is not very high
 - Resonant antennas ⇒
 ⇒ Small bandwidth
 - Excitation through silicon optical waveguides challenging

Vivaldi Antenna

- Used in the microwave range
- High gain and large bandwidth

 Design of a Vivaldi Antenna for Optical Wavelengths

https://www.photonics.ethz.ch/en/general-information/research/optical-antennas.html

Vivaldi plasmonic antenna

Coupled Mode Theory

Efficient coupling: Silicon and Plasmonic waveguides with same n_{eff} for their fundamental (TE) modes

$$L_c = \frac{\lambda_0}{2|n_e - n_o|} \qquad \text{s = 30 nm, } \mathbf{n}_{\text{eff}} = 2.17, \text{ w = 380 nm, } \mathbf{p} = 270 \text{ nm}, \mathbf{L}_c = 1.63 \text{ } \mu\text{m}}$$

[1] G. Bellanca et al., Optics Express (2017)

Vivaldi plasmonic antenna

Optimized Optical Vivaldi Antenna

- Coupler length L_c, Antenna length L_a and Antenna shape have been optimized to maximize Gain and Bandwidth
- The Vivaldi antenna performs well for all the wavelengths in the C Band (1530 ÷ 1565 nm)
 - Radiation patterns have regular shapes
- E Plan (1) ways above 9 dB

Broadside array of two Vivaldi radiators

- Antenna Arrays are compositions of Antennas suitably positioned and properly excited (playing with both amplitude and phase)
 - Directivity increase
 - Beam-Steering (changing the direction of the main lobe)

Broadside array of two Vivaldi radiators

- Radiation Pattern of the Array obtained through pattern multiplication theorem
 - Pattern of elementary (point) sources
 - Pattern of the Vivaldi Antenna
 - With the proposed configuration, only radiation patterns on the Horizontal (E) plane can be modified

No Grating Lobes on the Radiation Pattern of the 2 Point Source Radiation Patterns of Array and Vivaldi almost indistinguishable No increase in the directivity

Grating Lobes on the Radiation Pattern of the 2 Point Source Narrower Radiation Pattern for the Array ⇔Increase in the directivity (D = 16.7 dB)

Radiation Pattern Vivaldi Antenna Radiation Pattern Array of Vivaldi Antennas

Broadside array of N Vivaldi radiators

- Array directivity (red squares) and gain (blue squares) as a function of the number of antenna N (N=1, 2, and 4) by FDTD. The red circles report the array directivity calculated according to antenna theory
- In all the considered cases, the radiation efficiency is $\eta = G/D = 0.7$
- Large footprint of the overall array owing to the feeding network.

Travelling wave Vivaldi antenna array

Design of the tilted Vivaldi antenna

 Design requirements for the single antenna: partial power transfer from the Si to the plasmonic slot waveguide, as well as good antenna directivity

 L_{in} =100 nm, maximum directivity D=11.1 dB and enough power left in the Si waveguide to feed the following antennas

Length of the input straight region L_{in}

Design of the tilted Vivaldi antenna

 Design requirements for the single antenna: partial power transfer from the Si to the plasmonic slot waveguide, as well as good antenna directivity

Antenna length L_a

L_a=2000 nm, maximum directivity D=11.4 dB

Tilted Vivaldi antenna ARRAY (N=3)

 The variation of the distance between the antennas induces a phase shift between the antennas

variation of the directivity and of the gain with d variation of the tilt angle Φ of the beam with d

• Gain and directivity increase with the number of antennas

N=5, d=1790 nm, Φ=0 D=15.46 dB, G=14.70 dB

Conclusions

 On-Chip Optical Wireless Connections: High Gain antennas are needed to cope with free space attenuation

 Broad-side antenna arrays: High directivity (N=5, D=18 dB) large footprint (tens of µm)

 $\lambda_0 = 1.55 \ \mu m$ Vivaldi Antenna:

Coupling with SOI waveguides 9.9 dB Gain – Full C Band coverage

Travelling wave antenna arrays:
 lower directivity (N=5, D=15 dB)
 small footprint (3.5 μm x 8.7 μm)