

PANEL

Systems and Software for Cyber Smart Cities: Promises and Recent Advances

Moderator Petre Dini, IARIA, USA petre@iaria.org Thursday, April 26, 15:45 - 17:30 NexComm 2018, April 22-26, 2018 - Athens, Greece

Smart Cities: A growing reality

- SMART CITIES | misuse, misleading, marketing, buzzwords, trendy, ...YET, A REALITY
- :) new car color --> a 'brand new car'. ...
 :) counters for street-crossing | flashing 6,5,4... --> smart cities
- =>> smart city

| citizen-centric (utilities, comfort, health, well being, work, ambient, relaxation, culture/schools/information, protection, safety)

| technologies (safety, protection, speed, scalability, mobility, etc.)

software (behavioral models, cognitive models, body-software, interactive interfaces, apps, etc.)

| side-effects (health, pollution, noise, crowd-stress, excluded citizens, etc.)

| cyber-aspects (attacks, instability, conflicting decisions, citizens in danger, lack of resources, poisons, health-danger, lack of services, etc.)

Facets of Smart Environments (Cites)

- Urban traffic safety apps | security/communication
- Traffic optimizing services | special algorithms/real-time
- Localizing street services (gas, stations, electrical, foods, etc.) | graphics/visual/interfaces
- Tracking citizen | elderly | geolocation | geolocaiton in IoT |

- City service mapping/location | cartography software | cloud-based services | interactive software | dedicated apps

 Wearable smart devices | special screen/interface | special body-related software | body sensing apps | ... chip for monitoring alcohol/drugs

Body systems | special software execution systems | balancing procedures execution/data volumes

- Sensing and data processing | data fusion, data mining, pattern recognition
- Accessibility services | special interfaces | distributed software for bus/pedestrian/disabled drivers
- Forecasting services | databases, datasets, information mining techniques, machine learning

Sensing and dissemination info on pollution and noise | surveillance, alarm systems, optimal traffic rerouting

Public services | waste management |mobile sensing | waste estimation | redirecting services where needed

- City evolving services/systems | version software managements, rule-based systems, run-time updates and testing

Smart utility control/measurement/payment | gas + electricity + | special/dedicated networks + software

- Goods/products delivery | drones systems
- -Self-driving cars + electric cars | artificial intelligence + cognitive modeling +
- etc. | etc.

ALL-in-ONE

 ALL-in-ONE: what we already knew, but at a higher level of citizenoriented service

(i) Algorithms | data | database | methodologies | protocols | measurements (as 60s .. 2020) |
(ii) (IoT, Big Data, ML, AI, CLOUD, NFV/SDN, Fog/MEC, 5G/6G/7G, slicing, sensing, mmWave,) (as nowadays and beyond)

Additional dangers/unknown

- smart city: is a very complex system/environment
- in general: complexity decreases safety
- especially: uncontrolled moving entities (self-driving), incidentally dropping (drones), enormous and diversified data, heterogeneous decision-owners, conflicting decisions, situation changes
- help expectations: technologies (speed, accuracy), deepanalytics/thinking on data, real-time sensing, limitation of security threads (slicing, blockchains,..), wearable/implantable devices

Panel Experts

Gary Weckman, Ohio University, USA

Data Mining and Data Analytics for modeling and analysis of complex situations such as Smart City

Tewfiq El Maliki, hépia HES-SO, Switzerland

IoT security trends and Smart City

Eugen Borcoci, University POLITEHNICA Bucharest, Romania

Dedicated technologies for smart cities: NFV+ SDN, Fog/MEC, application in 5G and smart cities.

NexComm 2018

Panel on Systems and Software Theme: Systems and Software for Cyber Smart Cities: Promises and Recent Advances

Edge Computing Technologies for Smart Cities Applications

Eugen Borcoci University Politehnica Bucharest Electronics, Telecommunications and Information Technology Faculty (ETTI)

Eugen.Borcoci@elcom.pub.ro

NexComm 2018, Athens 22-26 April 2018

Edge Computing Technologies for Smart Cities Applications

Smart cities - need to be supported by powerful technologies

- Computing (Cloud, Edge, ...)
- Networking (5G, Core networks, ..
- Services (user-friendly, flexible, on demand, ...)
- Cloud computing (CC) is more and more used, including private/local and mixed cloud development
- However, centralization of traditional CC (processing and storage) may lead to some limitations
- Novel services and applications like IoT, mobility-related, .. would be better served by decentralized systems
- Edge networking devices and even user terminals more powerful in terms of processing, storage, communication capabilities

Edge Computing Technologies for Smart Cities Applications

- Edge computing solution
 - Fog Computing, Mobile Edge Computing, Cloudlets, Microdata centers, ..
- Fog Computing (FC) (C/SCO ~ 2011) extends the CC to the edge of networks, in particular wireless networks for IoT
 - FC nodes (FCNs) are typically located away from the main cloud data centers, i.e., at the network edge
- Mobile Edge Computing (MEC) ETSI an industry spec. ~2014.
 - MEC pushes the CC capabilities close to the Radio Access Networks in 4G, 5G
 - ETSI is developing a system architecture and std. for a number of APIs
- Cloudlet Carnegie Mellon University ~2013)
 - A cloudlet is middle tier of a 3-tier hierarchy: 'mobile device cloudlet cloud'
 - Cloudlet ~ "data center in a box" whose goal is to "bring the cloud closer".
- Micro datacentre Microsoft Research- ~2015
 - Extension of today's cloud data centers (as Microsoft Azure)
 - to meet new application demands (mobility, latency, power consumption, ..)

They include partially overlapping concepts and are also complementary

NexComm 2018, Athens 22-26 April 2018

Edge Computing Technologies for Smart Cities Applications

Fog Computing

Source [1]: Yuan Ai, et.al., "Edge computing technologies for internet of things: a primer" Digital Communications and Networks xxx (2017) 1–10, https://www.sciencedirect.com/science/article/pii/S2352864817301335

NexComm 2018, Athens 22-26 April 2018

Edge Computing Technologies for Smart Cities Applications

Fog/Edge (FC) use cases examples

Source [2]: A.V. Dastjerdi, et.al., "Fog Computing: Principles, Architectures, and Applications", 2016, Book Chapter in Internet of Things: Principles and Paradigms,

NexComm 2018, Athens 22-26 April 2018

Edge Computing Technologies for Smart Cities Applications

MEC Use Cases examples

Augmented Reality (AR) content delivery

- An AR app. on a smart-phone or tablet overlays augmented reality content onto objects viewed on the device camera
- App. on the MEC server can provide local object tracking and local AR content caching
 - RTT is minimized and throughput is maximized for optimum QoE
 - Use cases: offer consumer or enterprise propositions, such as tourist information, sporting event information, advertisements etc.

Source [3]: https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf Mobile-Edge Computing – Introductory Technical White Paper NexComm 2018, Athens 22-26 April 2018

Edge Computing Technologies for Smart Cities Applications

MEC Use Cases examples

- Video Analytics
 - distributed video analytics solution: efficient and scalable mobile solution for LTE
 - The video mgmt. application transcodes and stores captured video streams from cameras, received on the LTE uplink
 - The video analytics application processes the video data to detect and notify specific configurable events e.g. object movement, lost child, abandoned luggage, etc.
 - The application sends low bandwidth video metadata to the central operations and management server for database searches. Applications : safety, public security to smart cities

NexComm 2018, Athens 22-26 April 2018

Edge Computing Technologies for Smart Cities Applications

MEC Use Cases examples

Internet of Things (IoT)

- IoT generates additional messaging on telecoms networks, and requires gateways to aggregate the messages and ensure security and low latency
- Required: real time capability; grouping of sensors and devices is needed for efficient service
- IoT devices are often low (processor, memory capacity) → need to aggregate various IoT messages connected through the mobile network close to the devices
- This also provides an analytics processing capability and a low latency response time.

Source [4]: Yun Chao Hu et.al., "Mobile Edge Computing A key technology towards 5G" ETSI White Paper No. 11 September 2015, ISBN No. 979-10-92620-08-5

NexComm 2018, Athens 22-26 April 2018

Conclusions

- Edge computing strong candidate to support smart cities applications
- Need of harmonization between different actors
 - Std. organizations
 - Research groups, academia
 - Forums
 - Industrial actors
 -
 - related to (vision/concept, architecture, specification, deployment, implementation, etc.)

Edge Computing Technologies for Smart Cities Applications

References

 Yuan Ai, et.al., "Edge computing technologies for internet of things: a primer" Digital Communications and Networks xxx (2017) 1–10, https://www.sciencedirect.com/science/article/pii/S2352864817301335 http://
 A.V. Dastjerdi, et.al., "Fog Computing: Principles, Architectures, and Applications", 2016, Book Chapter in Internet of Things: Principles and Paradigms
 Mobile-Edge Computing – Introductory Technical White Paper https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
 Yun Chao Hu et.al., "Mobile Edge Computing A key technology towards 5G" ETSI

White Paper No. 11 September 2015, ISBN No. 979-10-92620-08-5

Haute école du paysage, d'ingénierie et d'architecture de Genève

Haute Ecole Spécialisée de Suisse occidentale

Fachhochschule Westschweiz

University of Applied Sciences and Arts Western Switzerland

SmartCity

Pr. Tewfiq El Maliki

IoT faces new attacks : Context

- September 2016, 1Tbps DDoS attack
- Attacks launched by a botnet composed of 150'000 IoT devices
- System & application complexity growth
 - Brittle, unmanageable, insecure

Attaques on Self-organized Network : More than 30

- Jamming attack
- Wormhole attack
- Blackhole attack
- Byzantine attack
- Traffic analysis
- Routing Attacks:
 - Routing Table Overflow
 - Routing Table Poisoning
 - Packet Replication
 - Route Cache Poisoning
 - Rushing Attack
- Resource consumption attack
- IP Spoofing attack
- State Pollution attack
- Sybil attack
- Fabrication
- Modification

- Location disclosure attack
- Session Hijacking attack
- Repudiation attack
- Denial of Service attack
- Flooding attack
- Colluding misrelay attack
- Device tampering attack
- Gray hole attack
 - Link spoofing attack
- Neighbor attack
- Jellyfish attack (Subset blackhole)
- Packet dropping attacks
- Impersonation or Spoofing attack

- Sleep deprivation torture
- SYN Flooding attack
- Malicious code attacks
- Illusion attack
- Link withholding attack
- Bogus attack
- Identity disclosure attack

Security vs. Cost

Static vs. dynamic security

How to solve security problems?

Reference Monitor and control Loop

Simple is difficult If there are problems, engineers will live

Data Analytics and Data Mining for modeling and analysis of Smart Cities

Gary Weckman Ohio University, USA

Concerns for data

- developing data repositories and mining packages to address a number of problems related to smart cities
- identify irregular patterns and bottlenecks which will aid city to optimize their transportation
- integrate this information with real time traffic data and weather conditions to develop more accurate predictions to help commuters
- unavailability of realworld datasets and test environments to evaluate models and techniques have slowed progress

Critical Research Challenges

- economic (who pays?)
- policy (privacy and data access)
- technology (cybersecurity, precision timing, and data analytics)
- overall coordination (standards and interoperability).
- different collection sources
- various sensors
- network infrastructures
- consolidate in a usable format
- quality of information

Vision of smart city

integrate information communications technology

physical infrastructures
transportation
improving living standard
large-scale applications in cities

- collect reliable real-world dataset for modeling
- aid decision-making for improved services
- analyzing massive data generated by different sensors
- incorporate analytics platforms and tools that are able to handle diverse datasets
- design platforms and solutions that can coordinate functions across a smart city

Review research efforts in smart cities

- create adequate insight on the development
- develop a tool using real-time extraction of real-world data that can be useful in research and development for advancing the concept
- explore existing tools and communication networks
- support smart city communications

 Goal: collect and analyze real-world data from real sources to aid in developing models that will improve smart city planning