

Pannel: SIGNAL 2018 Advances on Sensing Techniques and Signal Processing

Moderator : Pr. Wilfried Uhring – University of Strasbourg and CNRS

Pannel List : Özgür Tamer, Dokuz Eylül Üniversitesi, Turkey Laurent Fesquet, Grenoble INP/TIMA Laboratory, France Mohammad Mehdi Saberioon, University of South Bohemia in České Budějovice, Czech Republic

May 23 2018 – Nice, France

Introduction

- Sensing and Signal Processing has to be seen in this wide sense
 - Acquisition
 - Sensor
 - Low level driver
 - Pre processing
 - Analog
 - Signal conditioning
 - High level processing
 - Image processing , Microprocessor, FPGA, GPU, neuromorphic, ...

Sensing is everywhere

- Currently 60 100 sensor on board
- Smarter car → 200 expected number of sensor in a car in 2020
- **22 billions** sensor per year for automotive industry

Wilfried Uhring *Icube, University of Strasbourg and CNRS*

Sensing in mobile phone

- Proximity Sensor ->
- Ambient Light sensor
 - Screen brightness
- Barometer

Ambient-light and proximity sensor

Wilfried Uhring *Icube, University of Strasbourg and CNRS*

Sensing in Mobil phone

- Magnetometer
- Accelerometer
- Gyroscope

5

• Thermometer

Wilfried Uhring *Icube, University of Strasbourg and CNRS*

23:31

Wilfried Uhring

Sensing in mobile phone

- Humidity
- Camera
- Microphone

Sensing, allways sensing, ...

- Radar Sensor
- Optical Sensor
- Not visible wavelength camera (IR, THz, ...)
- Biosensors
- Touch Sensor
- Image Sensor
- Proximity Sensor and Displacement Sensor
- Level Sensor
- Motion and Position Sensor
- Humidity Sensor
- Accelerometer and Speed Sensor
- Chemical Sensor
- Force Sensor
- Electric & Magnetic Sensor
- Gesture Sensor
- Photoelectric Sensor
- Ultrasonic Sensor)
- ...

Sensor market

 According to Allied Market Research (AMR), global market sensors →\$241 billions by 2022

Wilfried Uhring

23:31

outline

- Sensor in IOT context
- Uncertainty in sensing information
- Sensor Fusion
- Trends
 - Compressed sensing
 - Signal processing
 - sustainability

Sensing in IOT Context

- Laurent Fesquet
 - Event driven sensor
 - Low power
- Big Data ?

Uncertainty in sensing information¹¹

- Unpredictive behavior from objects
 - Mohammad Mehdi Saberioon

Wilfried Uhring *Icube, University of Strasbourg and CNRS*

Sensor Fusion

Combining all the available information
Özgür Tamer

Wilfried Uhring *Icube, University of Strasbourg and CNRS*

Signal processing

- Embedded processing
- Cloud processing

Wilfried Uhring *Icube, University of Strasbourg and CNRS*

Sustainability

- Sensing for sustainability
 - Air metric
- Sustainable sensing
 - Low power, recyclable sensor
 - New technology
 - Organic electronic

The Third International Conference on Advances in Signal, Image and Video Processing SIGNAL 2018 May 20, 2018 to May 24, 2018 - Nice, France

Advances on Sensing Techniques and Signal Processing

Panel

Laurent Fesquet

University Grenoble Alpes / CNRS – TIMA – Grenoble, France

EPFL – ICLab – Neuchâtel, Switzerland

Laurent.Fesquet@univ-grenoble-alpes.fr

SIGNAL, May 23rd, 2018

- + more data
- + more storage
- + more computation
- + more communications
- + more consumption

+ more autonomy

	- I'
ADC	01011101001011110101101
	······································

Nyquist-Shannon Theorem

2

How to reduce the activity and the number of samples?

Uniform and Synchronous

P=αCV²f

• Power consumption is sensitive to V², f and C

Reduce V, f and C

... but you will loose performances

• Other option:

Reduce the activity **α**

Design Event-driven circuits

4

- Sampling should be specific to signals and applications
- Only compute few events
- Use Event-driven electronics

> New freedom degree for app-designers

5

The Third International Conference on Advances in Signal, Image and Video Processing SIGNAL 2018 May 20, 2018 to May 24, 2018 - Nice, France

Sensing and Sampling for Low-Power Applications

Laurent Fesquet

University Grenoble Alpes / CNRS – TIMA – Grenoble, France EPFL – ICLab – Neuchâtel, Switzerland

Laurent.Fesquet@univ-grenoble-alpes.fr

Thursday, May 24, 9:15

SIGNAL, May 24th, 2018

Thanks for your attention

7

Dr. Özgür TAMER ozgur.tamer@deu.edu.tr

- Sensors are far from perfect devices.
- Each has limitations based on their physical sructures
- General Limitations
 - Sensor Deprivation
 - Limited spatial coverage due to region restrictions
 - Limited temporal coverage due to set up time before measurements
 - Imprecision
 - Uncertainty due to limited observation of the object

- How do we cope with imperfect sensors?
- Sensor fusion is the art of combining multiple physical sensors to produce more accurate than any of the sensor alone can give.
- Combining data from multiple sensors corrects for the deficiencies of the individual sensors

- Fusion processes are often categorized in a three-level model distinguishing low, intermediate, and high level fusion
 - Low-level fusion: combines several sources of raw data to produce new data that is expected to be more informative than the inputs
 - Intermediate-level fusion: Combines various features processed from raw data to be used for further processing
 - High-level fusion: Combines decisions from several methods

- What do we gain
 - Robustness and reliability
 - Extended spatial and temporal coverage
 - Increased confidence
 - Reduced ambiguity and uncertainty
 - Robustness against interference
 - Improved resolution

Determining the weights

- Kalman Filter: uses Markov Chains and Bayesian Inference to iteratively refine its guesses for weights using prior observations.
- PID (Proportional–Integral–Derivative) Filters are like primitive Kalman filters with all the iterative tuning are replaced with three fixed values.
- Real systems are often hybrids, somewhere between the two.

Some examples

- Ref:
- An articulated assistive robot for intuitive hands-on-payload manipulation Alexandre Campeau-LecoursPierre-Luc BelzileThierry Laliberté Clément Gosselin
- Junsheng Fu youtube video