IARIA SensorComm

Panel 2
Tuesday September 18
Moderator
Dr. Paul Fortier
Panel Topic

Advances on Miniaturization and Computation

Panelist

Michal Borecki, Warsaw University of Technology, Institute of Microelectronics and Optoelectronics Poland

Arcady Zhukov, Department Materials Physics, Faculty of Chemistry, University Basque Country (UPV/EHU), San Sebastian, Spain and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
Are there limits to how small we can go? Or is Moore’s law dead?

- Present technology is at ~14 nanometers across
- Proposed improvements may bring us down to Silicon’s atomic size of about 0.2 nanometers
- That leaves no room for 2D architectures to continue to grow
- A new revolution is needed
What Technologies may move us forward

- Optics / photonics
- Quantums
- Architecture advances (SoC, SiP, SoS, ???)
- Wafer manufacturing improvements (TSV and wafer stacking)
- Materials (CNT, Graphene fibers, glass, …)
Are HW Technology Advances Enough?

- SoC, SiP, SoS, …. Where is their limit?
- Is the CLOUD the answer??
- Quantum Computing ???
- Photonic Computing???
- New model?
What about advances in Computation

- Decentralized processing
- Massive parallelism
- Cloud computing (but at what cost?? Lose control of source)
- New Algorithms supporting increased processing capacity
Algorithms and the Cloud

• What can we hope for the cloud and algorithms running on it to deliver?
Miniaturization is not simply Processors and memory

Shrinking sensors, actuators, combined technologies, e.g. NEMS, MEMS, etc

Gains may come from other places in the application

IoT, massive data production, data always available from anywhere and anytime for almost any conceivable use, what may come from this?

New computational models

New Architectural models (relieve the memory bottleneck)
Optoelectronics sensors miniaturization - outlier data generation and automatic rejection

M. Borecki

Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warsaw, Poland
Extension of fluorescence tests with controlled temperature of the medium

The emission spectrum of
Porous Coordination Network (PCN)
Anthracene
Anthracene@PCN at 298 K (red)
Anthracene@PCN at 77 K (blue)

The emission spectrum of
Porous Coordination Network (PCN)
Phenanthrene
Phenanthrene@PCN at 298 K (red)
Phenanthrene@PCN at 77 K (blue)

When a capillary optrode CV7087Q is considered, the approximated fluorescent aperture is 0.7mm. This fluorescent aperture is 10 times lower than when a classical cuvette is used. Therefore, the optical power used for excitation of fluorescence in the proposed head may be significantly lower (100 times) than when a commercial spectrophotometer integrated device is used.
Capillary sensor set-up with local sample heating
Capillary sensor head

to power supply

capillary optrode

magnetic tape

marker

window

micro-heater

V-groove for optrode

V-groove for fiber

to light source

to opto-el. interface

plastic box

to light source
Capillary optrode

Reduction of optrode dimension increases the effect of imperfections on the measurement result

M. Borecki; P. Prus; M. L. Korwin-Pawlowski; P. Doroz; J. Szmidt, „Automatic detection of outlier data received in multi-parametric capillary sensors of diesel fuels fit for use”, Proc. SPIE 10808,, 108080A (1 October 2018); doi: 10.1117/12.2500289
100% bio-diesel fuel properly examined

- a_0: 3.4->4.1V
- $\Delta \tau \sim 2.5s$
- $\tau \sim 4s$
- t: 18.6->22.6s

- Trial 01:
 - signal
 - heater

- Trial 02:
 - signal
 - heater

- Trial 03:
 - signal
 - heater
Data registered by untrained operator of 70% bio-diesel fuel

- s1 and s2 – proper data
- s3 – uncertain data
- s4 – outlier data

M. Borecki; P. Prus; M. L. Korwin-Pawłowski; P. Doroz; J. Szmidt, „Automatic detection of outlier data received in multi-parametric capillary sensors of diesel fuels fit for use”, Proc. SPIE 10808,, 108080A (1 October 2018); doi: 10.1117/12.2500289
Dendrogram cluster analysis of raw data signals registered by untrained operator

Direct application of cluster analysis does not support the desired results

s1 and s2 – proper data; s3 uncertain data; s4 outlier data
The vector pattern of data created on the base of physical phenomena of measurement

<table>
<thead>
<tr>
<th>Trial number</th>
<th>time of local heating required to vapor phase creation (t) [s]</th>
<th>time of vapor phase existence (t) [s]</th>
<th>first maximum of derivative (pd1) [V/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>13</td>
<td>3</td>
<td>-1.5</td>
</tr>
<tr>
<td>s2</td>
<td>15</td>
<td>5</td>
<td>-0.75</td>
</tr>
<tr>
<td>s3</td>
<td>15</td>
<td>9</td>
<td>-1.75</td>
</tr>
<tr>
<td>s4</td>
<td>35</td>
<td>3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

data of signals registered by untrained operator

s1 and s2 – proper data; s3 uncertain data; s4 outlier data
Dendrogram cluster analysis of vector pattern of data registered by untrained operator

- s1 and s2 – proper data
- s3 uncertain data
- s4 outlier data

M. Borecki; P. Prus; M. L. Korwin-Pawlowski; P. Doroz; J. Szmidt, „Automatic detection of outlier data received in multi-parametric capillary sensors of diesel fuels fit for use”, Proc. SPIE 10808,, 108080A (1 October 2018); doi: 10.1117/12.2500289
CONCLUSION

1. Outlier data generation as a result of complex measurement procedures seems quite probable, especially when measurement is performed by untrained operators.
2. Detection of outlier data received in multi-parametric capillary sensors is essential in sensor automation.
3. Uncertainties of raw data in capillary sensor with local sample heating are results of similar amplitude course of registered signal for optrode improperly filled and turbid flow of liquids.
4. Two techniques of digital automated signal processing were examined.
 • Results show the failure of classic statistical raw data processing with cluster analysis aimed for outlier detection.
 • Cluster analysis applied for processed data to the vector form of pattern results are correct. The use of vector pattern of data is effective when physical phenomena of the measuring procedure are taken into account.
 • For statistical data analyses the well defined set of data is required.
Magnetic sensor: last tendencies

A. Zhukov

1 Dpto. de Fís. Mater., UPV/EHU San Sebastián 20009, Spain
2 Dpto. de Fís. Aplicada., UPV/EHU San Sebastián 20009, Spain
3 Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
Applications of Magnetic Materials
Magnetic Field and Magnetic Sensors

- **Bio magnetic field**
- **Nature magnetic field**
- **Industrial magnetic field**
- **Space magnetic field**

Units:
- Gauss (G)
- Tesla (T)
- Proton magnetometer
 - (0 ~ 0.01 Hz)
- SQUID
 - (0 ~ 0.01 Hz)
- Fluxgate sensor
 - (0 ~ 10 kHz)
- Hall sensor
 - (0 ~ 1 MHz)
- MR, GMR sensor
 - (0 ~ 10 MHz)
- Amorphous wire MI sensor
 - (0 ~ 10 MHz)

Intrinsic noise level at room temperature.

Source– Prof. K. Mohri
Magnetic sensors:

Comparison of different magnetic field detection methods

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Head length</th>
<th>Resolution</th>
<th>Response speed</th>
<th>Power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall sensor</td>
<td>10–100 µm</td>
<td>0.5 Oe ± 1 kOe</td>
<td>1 MHz</td>
<td>10 mW</td>
</tr>
<tr>
<td>MR sensor</td>
<td>10–100 µm</td>
<td>0.1 Oe ± 100 Oe</td>
<td>1 MHz</td>
<td>10 mW</td>
</tr>
<tr>
<td>GMR sensor</td>
<td>10–100 µm</td>
<td>0.01 Oe ± 20 Oe</td>
<td>1 MHz</td>
<td>10 mW</td>
</tr>
<tr>
<td>Fluxgate</td>
<td>10–20 mm</td>
<td>1 Oe ± 3 Oe</td>
<td>5 kHz</td>
<td>1 W</td>
</tr>
<tr>
<td>MI sensor</td>
<td>1–2 mm</td>
<td>1 µOe ± 3 Oe</td>
<td>1 MHz</td>
<td>10 mW</td>
</tr>
<tr>
<td>SI sensor</td>
<td>1–2 mm</td>
<td>0.1 Gal/30 Gal</td>
<td>10 kHz</td>
<td>5 mW</td>
</tr>
</tbody>
</table>

Amorphous wire and CMOS IC-based sensitive micro-magnetic sensors (MI sensor and SI sensor) for intelligent measurements and controls

K. Mohria, T. Uchiyamaa, L.P. Shena, C.M. Caia, L.V. Paninaa

Advantages

TABLE I: COMPARISON OF MAGNETIC SENSORS

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Head length</th>
<th>Resolution</th>
<th>Response speed</th>
<th>Power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall sensor</td>
<td>10–100 µm</td>
<td>0.5 Oe ± 1 kOe</td>
<td>1 MHz</td>
<td>10 mW</td>
</tr>
<tr>
<td>MR sensor</td>
<td>10–100 µm</td>
<td>0.1 Oe ± 100 Oe</td>
<td>1 MHz</td>
<td>10 mW</td>
</tr>
<tr>
<td>GMR sensor</td>
<td>10–100 µm</td>
<td>0.01 Oe ± 20 Oe</td>
<td>1 MHz</td>
<td>10 mW</td>
</tr>
<tr>
<td>Fluxgate</td>
<td>10–20 mm</td>
<td>1 Oe ± 3 Oe</td>
<td>5 kHz</td>
<td>1 W</td>
</tr>
<tr>
<td>MI sensor</td>
<td>1–2 mm</td>
<td>1 µOe ± 3 Oe</td>
<td>1 MHz</td>
<td>10 mW</td>
</tr>
<tr>
<td>SI sensor</td>
<td>1–2 mm</td>
<td>0.1 Gal/30 Gal</td>
<td>10 kHz</td>
<td>5 mW</td>
</tr>
</tbody>
</table>
MI element based on Amorphous Microwire

Third Generation of Magnetic Sensors

MI Sensor

Third Generation
Micro-size, sensitivity 0.1 mGauss

Second Generation
Micro-size, sensitivity 1 Gauss

GMR Sensor
MR Sensor
Hall Sensor

First Generation
Large size, sensitivity 1 Gauss
Magnetic Detection Coil

Increasing Performance

1900 1960 1990

Nanotechnology
Semiconductor technology

Based on Amorphous Microwire since 2010

Industrial application in Smart phone using MI sensor

Last tendencies: Size reduction, frequency increasing

Source: Aichi Micro Intelligent Corporation
Amorphous Wire 3-axis Electronic Compass chip: A MI 306

- **Resolution**: 0.16 μT (160 nT)
- **Dynamic range**: ± 1.2 mT (± 12 Oe)
- **Power voltage** (V_{dd}): 1.7 V
- **Power current** (I_{dd}): 150 μA
- **Power consumption**: 255 μW
- **Operating temperature**: $-45 \sim 80$ °C
- **Chip dimension**: $2.04 \times 2.04 \times 1.0$ mm

Reversibility for big disturbance magnetic field shock ∞

Advantageous of MI sensor:
1. Micro size and small power consumption (sub-mW)
2. High sensitivity with resolution of 0.01 % for dynamic range (Pico-Tesla resolution)
3. Quick response with GHz
4. High reversibility for big magnetic field disturbance shock
5. High temperature stability

Advanced 3-axis MI sensor chip installed in watch

Provided by Prof. K. Mohri

External stimuli: strain, compression, magnetic field, or heating
Magnetic filed dependence and value are affected by magnetic anisotropy

Skin Effect of the Magnetic Conductor

\[\delta = \sqrt{\frac{\rho}{\pi \mu_\phi f}} \]

\(\mu_\phi (H,f) \)

\(\delta < r \)

(at high enough \(f \))

500\% change per 1 Oe

Pulse-Driven Magnetoimpedance Sensor Detection of Cardiac Magnetic Activity

Shinsuke Nakayama¹, Kenta Sawamura¹, Kaneo Mohri², Tsuyoshi Uchiyama²

¹ Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan; ² Department of Electronics, Nagoya University of Graduate School of Engineering, Nagoya, Japan
Magnetic materials...
Magnetic wires:

- Iron whiskers
- Wiegman magnetic wires (CoVFe, 1970-th)

Amorphous: milli micro nano wires

In-rotating water wires (can be drawn to 20-30 μm) – rough surface

Melt extracted (40-50 μm) – not perfectly cylindrical cross section

Glass coated (0.1-50 μm) – glass coating (stresses)
Comparison of microwires with other soft magnetic materials

Ribbons, Cross section above $4 \times 10^4 \mu m^2$, fast and cheap fabrication, extremely soft magnetic properties, too big for microsensors applications

Wires, cross section above $2 \times 10^3 \mu m^2$, fast and cheap fabrication, good magnetic properties, effect of sample
Length - too big for microsensors applications

Thin films, cross section $0.1 - 10^2 \mu m^2$, slow fabrication, Higher cost, worse magnetic softness, good compatibility in integrated circuits, effect of substrate

Microwires, typical cross section above $4 - 2 \times 10^3 \mu m^2$, fast and cheap fabrication, extremely soft magnetic properties, good for microsensors applications
Fabrication of Glass coated microwires (thinnest wires)

- Co, Ni, Fe and Cu rich compositions

Advantages:
1. Unexpensive and simple fabrication method
2. Excellent soft magnetic properties and high GMI effect
3. Fast DW propagation
4. Also recently Heusler-type and granular microwires
5. Biocompatibility (glass-coating)
GMI en microwires

GMI effect, high sensitivity
450%/Oe: 1 Oe = 0.1 mT
1% MI change ≈ 0.0002 mT

f=10MHz

ρ = 0.98
ρ = 0.816
ρ = 0.789

magnetoimpedance ratio ∆Z/Z, (%)
axial magnetic field H (A/m)

GMI effect, high sensitivity
450%/Oe: 1 Oe = 0.1 mT
1% MI change ≈ 0.0002 mT
Proposed magnetic memory and logic based on DWP

Possible MRAM and logic applications
Stuart S. P. Parkin, et al.
Science 320, 190 (2008);

Controlled and fast DW movement
One of 10 most prominent applications (MIT ranking)
Conclusions

- Soft magnetic properties and GMI effect can be realized in magnetic microwires
- By appropriate post-processing we can considerably improve GMI effect and magnetic softness in Co-rich magnetic microwires

Thank you for the attention!

“Advances in Giant Magnetoimpedance Materials” by A. Zhukov, M. Ipatov and V. Zhukov (issue October 2015)
IARIA SensorComm Panel 2: Advances on Miniaturization and Computation

Paul Fortier, UMass Dartmouth, Panel Moderator and Panelist

Advances in miniaturization and computation can be looked at in very different ways. From a hardware perspective, miniaturization and improvements in design have contributed to a continuous improvement in computational speeds (e.g. instructions per second continue to rise). Though miniaturization alone will not solve the always increasing demand by algorithms computation for more speed in order to solve more complex problems. Technology is nearing the limit for 2D wafer densities. Does this mean the end to Moore’s law? Possibly not if one takes into consideration advances in computer architecture. For example advances in 3D chips using wafer stacking and through silicon vias have resulted in drastic increases in the number of processing engines and memory available in the same footprint. Such improvements in computer fabrication technologies have led to realizing systems on a chip (SoC) designs as well as systems in a package (SiP) architectural complete systems implementations. One issue to address are the limits to wafer stacking. One could also look towards possible new technologies such as optical computing or quantum computing as areas where additional capacity may be found.

Miniaturization does not just imply processing and storage, but also sensors, actuators, and other peripherals. What does the future hold in these related technologies and what are the impacts of their decreasing Space, Weight, Power (SwaP) and costs? The argument may be that we are reaching limitations for getting much more from standalone computational engines, possibly one should look into advances in computation provided from distributed or cloud computing. Advances in computation are a bit vaguer. Do we consider only standalone computers and algorithms running on them, or do we consider distributed, and cloud based algorithms? What big new computational advances have occurred recently? Possibly big data and big data analytics driven by cloud computing. One issue to consider is who owns an algorithm in the cloud? How secure is the algorithm?

The two additional panelists provided different views on the panel’s topic from very different perspectives
Michal Borecki from the Warsaw University of Technology Poland, looked at optical sensor miniaturization and trends. Dr. Borecki presented; Optoelectronics sensors miniaturization - outlier data generation and automatic rejection. His statement follows;

Optoelectronic sensors miniaturizations results in improvement of sensors fit for use, but also introduce, depending on sensing principle, different outlier data. These outlier data may come from random pollution of medium in which the measured factor is positioned as well as may come from lack of precise in sample holding. Fortunately, vector data pattern generation of characteristic point of measurement and measurement multiplication enables automatic rejection of outlier data.

Arcady Zhukov, from the University Basque Country (UPV/EHU), Spain also looked at magnetic sensor miniaturization and improvements. His presentation; Magnetic sensor: last tendencies, focused on trends and improvements in magnetic sensors and their applications. His statement follows;

One of the recent tendencies related with development of industrial applications in the field of magnetic sensors is the miniaturization of the magnetic sensors. Certain industrial sectors, like magnetic sensors, microelectronics, security etc, need cheap materials with reduced dimensionality and simultaneously with high magnetic properties (particularly enhanced magnetic softness). This tendency stimulated development of technology for magnetic materials with reduced dimensionality, such as thin films and thin wires. Particularly magnetic wires exhibiting giant magnetoimpedance effect are using in real technological applications for low magnetic field detection owing to high magnetic field sensitivity allowing to achieve magnetic field sensitivity similar to cryogenic devices.