
Software Security Testing

George Yee
Aptusinnova Inc. and Carleton University

Ottawa, Canada

SECURWARE 2018 Tutorial, September 16, 2018

Contents
�  Introduction

�  The security problem, why security is hard

�  Security Testing
�  Description, Requirements, Test Planning, Risk Analysis,

Penetration Testing, Vulnerabilities, Example Risk Analysis

�  Recent Research
�  Examples of recent research in security testing

�  Conclusions

�  References

© 2018 Aptusinnova Inc.

2

!
Introduction !

© 2018 Aptusinnova Inc.

3

My Testing Background

National Research Council of Canada
Ø  Senior Research Officer: Information Security Group

•  Researched threat analysis, a basis for testing

Bell-Northern Research / Nortel Networks
Ø Advisor: Test Technology for Optical Transmission Verification

and Optical Transmission Design

•  Software reliability, operations profiling, software design
for testability, test tools

Ø Member of Scientific Staff: DMS Product Test Strategy

•  Formulate test strategy, together with automated testing
Ø  Member of Scientific Staff: Network Planning Tools in Systems

Engineering
•  Performed designer testing (unit testing)

Introduction

© 2018 Aptusinnova Inc.

4

•  Criticality
Ø  Software controls and manages

•  manufacturing processes, water supplies, electric power
generation and distribution, air traffic control systems, stock
market trading systems, defense systems, etc.

•  Necessity
Ø  Internet indispensable for

•  governments, companies, universities, financial institutions

•  Ubiquity
Ø  Software is everywhere in our daily lives

•  Work, home, commute to work, leisure time

Why Secure Software?
Introduction

© 2018 Aptusinnova Inc.

5

•  November, 2017, Uber: Uber revealed that it became aware of a
data breach in late 2016 that potentially exposed the personal
information of 57 million Uber users and drivers.

•  September, 2017, Equifax: This is one of the three largest credit
agencies in the US. It announced a breach that may have affected
143 million customers, one of the worst breaches ever due to the
sensitivity of the data stolen.

•  March, 2017, Dun & Bradstreet: This business services company
found its marketing database with over 33 million corporate
contacts shared across the web.

•  Many more!

Recent Attacks5

Introduction

© 2018 Aptusinnova Inc.

6

Securing Software is Hard
�  Can you test in quality?

�  What about very smart malicious attackers? Attackers
with lots of resources? Attackers sponsored by nation
states?

�  What’s the difference between security testing and
functional testing?

�  How can you analyze SW designs for security?

�  Can you measure security?

Introduction

© 2018 Aptusinnova Inc.

7

Securing Software is Getting Harder

� Triple Trouble
Ø Connectivity

�  The Internet is ubiquitous, and is the host for
most software

Ø Complexity
�  networked, distributed, interdependent

Ø Unpredictability
•  Systems evolve unexpectedly and are

changed without warning

Introduction

© 2018 Aptusinnova Inc.

8

Old Security Model is Reactive
�  React to attacks by defending the “perimeter” with a

firewall to keep bad things out

�  React to security bugs with “patching”

�  React to security issues by “reviewing” products only when
they’re complete

Ø  Throw it over the wall testing (insufficient component
testing)

Ø Depending too much on penetration testing

�  React to security problems by depending too much on
security functions

Ø  “We employ SSL”

Introduction

© 2018 Aptusinnova Inc.

9

Security Model Must Become
Proactive

�  Design for security by building in security from the
start of development

�  Identify vulnerabilities and secure them before they
are exploited

�  Minimize attack surface as far as possible, e.g.
minimize the quantity of sensitive data that is stored
online

�  Make it expensive for an attacker to succeed by using
multiple layers of security, e.g. 2 – factor
authentication

Introduction

© 2018 Aptusinnova Inc.

10

Security Problems are Complex

Implementation bugs (50%)
�  Buffer overflow

�  Race conditions
�  Unsafe environmental

variables
�  Unsafe system calls

�  Untrustable input

�  …

Architectural flaws (50%)
�  Misuse of cryptography

�  Compartmentalization errors
�  Privileged block protection

failure
�  Catastrophic security failure

�  Broken access control

�  …

Introduction

© 2018 Aptusinnova Inc.

11

Security Related Bugs Differ from
Traditional Bugs

�  Users do not normally try to intelligently search out
software bugs but malicious attackers intelligently search
for vulnerabilities

�  Developers can (and do) learn to avoid poor programming
practices that can lead to buggy code, but the list of
insecure coding practices is long and grows longer every
year

Introduction

© 2018 Aptusinnova Inc.

12

Introduction Statistics on software vulnerabilities reported since 1988
– Source: NIST: US Dept. of Commerce

© 2018 Aptusinnova Inc.
13

Classic Security Tradeoff
Introduction

Security
Functionality,
Complexity

417
1090

2437

4129 3784 3780

5990

8064

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1999 2000 2001 2002 2003 2004 2005 2006

N
o.

 o
f V

ul
ne

ra
bi

lit
ie

s

Year

SW Vulnerabilities

© 2018 Aptusinnova Inc.

14

Challenge of Secure Software

�  Building secure software systems is one of the greatest challenges
of modern times.

Ø  Security problem has existed for > 40 years: “Efforts to build secure
computer systems have now been underway for more than a decade.”+

Ø  Recently the security problems have grown many times worst.
Ø  Researchers have proposed:

�  integrating security requirements with software functional requirements
�  Identifying specific dangers to watch for during design

�  automatic source code vulnerability checking tools
�  code obfuscation to resist reverse engineering
�  protecting critical memory locations at run time
�  many others

+C.E. Landwehr, “Formal Models of Computer Security”, ACM Computing Surveys, Vol. 13, No. 3,
September 1981.

Introduction

© 2018 Aptusinnova Inc.

15

!
Software Security Testing!

© 2018 Aptusinnova Inc.

16

Security = Building + Breaking

�  Security requires 2 hats
Ø  One to build – building secure

software based on software
engineering

Ø  One to break – determining how
software can be broken based on
vulnerabilities and threats

�  Security testing has 2 sides
Ø  Functional security testing

(constructive)
Ø  Risk/threat based security testing

(destructive)

Security Testing

© 2018 Aptusinnova Inc.

17

(Software) Security Testing

�  Use of testing techniques specifically to probe security
Ø  Goal: Reduce vulnerabilities within a software system

Ø  Business case: straightforward to justify

Ø Testing security functionality
Ø Testing vulnerability to malicious attacks
Ø  Driven by probing undocumented assumptions and areas of

particular complexity to determine how software can be
broken

Ø  Testing vulnerability emphasizes what an application must not
do rather than what it should do – impacts testing

Ø  Present throughout the SDLC in various stages
Ø  Well known form is Penetration Testing (more later)

Ø  Main activities: risk analysis, test planning, actual testing

Security Testing

© 2018 Aptusinnova Inc.

18

Indirect Benefits of Security Testing
�  May be the only dynamic analysis (executing) that the

software is ever subjected to, for problems that are
better found dynamically

�  Help confirm that the developers did not overlook some
insecure programming practices

�  Help identify and mitigate risks from third-party
components, where development artifacts like source
code and architecture diagrams are unavailable

�  Provide metrics of software insecurity and help raise the
alarm when software is seriously flawed from the
security standpoint

Security Testing

© 2018 Aptusinnova Inc.

19

Bases for Security Testing

�  Security requirements consist of
�  Functional security requirements à testing security functionality

�  “Must not” requirements à testing for malicious attacks
Ø  Harder to obtain and test than functional requirements

�  Risk analysis
�  Different forms – threat modeling recommended (more later)

�  Use list of common vulnerabilities as starting point

Security Testing

© 2018 Aptusinnova Inc.

20

Security Requirements I

�  Sources

�  Functional security requirements (aka “positive” requirements)

•  “When a specific thing happens, the software should
respond in a certain way”

•  Defined at the start of the SDLC (e.g. from
regulatory compliance, security policy, etc.)

•  Defined from mitigations due to risk analysis (e.g.
mitigate privacy risk with encryption)

•  Straight forward to test, especially if mapped to
software artifact responsible

Security Testing

© 2018 Aptusinnova Inc.

21

Security Requirements II
�  Sources (cont’d)

�  “Must not” requirements (aka “negative” requirements)

•  “A specific thing must not happen”

•  Defined from risk analysis

•  May be difficult to test (e.g. “no module may be
susceptible to buffer overflow” – not implemented in
a specific place)

�  Some security requirements may not be testable, but can neither be
refined nor dropped, e.g. “an attacker should never be able to take
control of the application”

�  Most developers are not security experts, and may not understand
how to implement some security requirements

Security Testing

© 2018 Aptusinnova Inc.

22

Tests from Negative Requirements

�  Test templates describe tests for specific risks and
requirements in specific types of modules

�  Captures past experience – use if available

�  Incident reports may contain descriptions of successful
exploits à tests

�  Threat modeling – identified threats à tests, e.g.
“script kiddies”

�  Requires a deep knowledge of the software and its
environment

Security Testing

© 2018 Aptusinnova Inc.

23

A Software Security Tester Needs
to Understand

�  A software component and its environment – how the
component can corrupt the environment and vice versa

�  The assumptions of the developers (attackers attack the
assumptions of developers)

�  Different abstraction levels of software, e.g. code level
abstraction may show vulnerabilities not visible at the
architectural abstraction level

�  The mindset of the attacker and be prepared to devise
tests that may fall outside the range of normal testing

Security Testing

© 2018 Aptusinnova Inc.

24

Test Planning I

�  Test Plan Purpose: organize security testing process

�  Incorporate both a high-level outline of which artifacts
are to be tested and what test methodologies to use

�  Include a general description of the tests themselves,
including prerequisites, setup, execution, and a
description of what to look for in the test result

�  Holistic, takes place throughout development process

�  Fractal, similar planning activities occur at different
abstraction levels

Security Testing

© 2018 Aptusinnova Inc.

25

Test Planning II

�  Works with risk analysis, which also takes place
throughout development

�  Need to devise tests for mitigations identified in risk analysis

�  Benefits
�  Provides written record of what needs to be done

�  Allow project stakeholders to sign off on the intended testing
effort – helps to obtain stakeholder support

�  Provides a way to measure progress (e.g. report to
stakeholders)

�  Records test priorities

Security Testing

© 2018 Aptusinnova Inc.

26

Test Planning III

Risk Analysis

Mitigations

Security
“Must Not”
Requirements

Test Planning

Risks

Security
Functional
Requirements Regulatory

Compliance,
Security Policy,
Incidents, etc.

Security Testing

© 2018 Aptusinnova Inc.

27

Security Needs to Permeate SDLC

�  Initiation Phase
�  Preliminary risk analysis using past experience with similar

systems à early focus for test planning
�  Environment?, security needs?, impact of security breach?

�  Requirements and Design Phases
�  Test Plan: Outline how security requirements will be tested,

possibly revise requirements that are not testable
�  Add details to preliminary risk analysis à possible new

mitigation features and security requirements

�  Coding Phase
�  Software available for testing à begin security testing

Security Testing

© 2018 Aptusinnova Inc.

28

Security Testing Within Typical
Types of Testing I

�  Unit Testing (Developers)
�  Testing positive security functional requirements – ensure test

plan includes these requirements
�  Do not under estimate the security threats to units

�  What assumptions does an unit make about its interactions? Are
those assumptions being checked?

�  Integration Testing
�  Rich in component interactions à security bugs

�  Determine what data can and cannot be influenced by an
attacker, e.g. input values, check values where possible

�  Don’t forget error handlers

Security Testing

© 2018 Aptusinnova Inc.

29

Security Testing Within Typical
Types of Testing II

�  System Testing
�  The complete system is attacked

�  Stress testing
�  Software performs differently under stress à security

problems, e.g. component disabled due to lack of
resources

�  Penetration testing

�  Tests the actual artifact that will be deployed
�  Real vulnerabilities uncovered

Security Testing

© 2018 Aptusinnova Inc.

30

Penetration Testing I

�  Attempt to circumvent the security features of a system
based on an understanding of the system design and
implementation

�  Purpose: identify methods of gaining access to a system
by using common tools and techniques used by attackers

�  Very labor-intensive and requires expertise to minimize
the risk to targeted systems

�  Requires rules of engagement, e.g. IP addresses to be
tested, identification of restricted hosts, times, etc.

�  Can be overt or covert

Security Testing

© 2018 Aptusinnova Inc.

31

Penetration Testing II

�  Can simulate an inside and/or outside attack

�  Incorporate results of risk analysis

�  Consists of 4 phases:

�  Planning: rules, management approval, goals

�  Discovery: starts with actual testing, includes vulnerability
analysis

Security Testing

Planning

Reporting

Discovery Attack

© 2018 Aptusinnova Inc.

32

Penetration Testing III

�  Typical vulnerabilities exploited

Security Testing

Kernel Flaws
Buffer Overflows
Symbolic Links
File Descriptor Attacks

Race Conditions
File and Dir. Permissions
Trojans
Social Engineering

© 2018 Aptusinnova Inc.

33

© 2018 Aptusinnova Inc.

34

Risk Analysis I
�  Main ingredient of a secure software development

process

�  Two main purposes:
�  Forms the basis for risk-based testing
�  Forms the basis for risk prioritization

�  Identify threats and vulnerabilities for
�  Development of overall test strategy

�  Particular tests based on the threats, vulnerabilities, and
assumptions

�  Increasing test coverage and focus in risky areas

�  Selecting test data inputs based on threats and usage profiling

�  Carry out at different abstraction levels (initial
concepts, high level design, architecture, code)

Security Testing

© 2018 Aptusinnova Inc.

35

Risk Analysis II
�  Multiple methods from researchers and vendors, but

prototypical approach is:
�  Learn as much as possible about the analysis target (e.g. from

specifications, discussions, code)

�  Discuss security issues surrounding the system (e.g. identifying
vulnerabilities using tools or lists of common vulnerabilities,
mapping out exploits)

�  Determine the probability of compromise (e.g. determine likelihood
by comparing attacks against controls or defenses)

�  Perform impact analysis (e.g. determine impact on assets and
business goals)

�  Rank risks
�  Develop a mitigation strategy (e.g. recommend countermeasures to

mitigate risks)

�  Report findings (describe risks, impacts, where to spend resources)

Security Testing

© 2018 Aptusinnova Inc.

36

Vulnerabilities for Risk Analysis I
Security Testing

Kernel Flaws
Buffer Overflows
Symbolic Links
File Descriptor Attacks
Race Conditions
File and Dir. Permissions
Trojans
Social Engineering

�  From those identified for penetration testing earlier

© 2018 Aptusinnova Inc.

37

Vulnerabilities for Risk Analysis II
�  From attack patterns

Security Testing

© 2018 Aptusinnova Inc.

38

�  Threat modeling (aka threat analysis): a method for
systematically assessing and documenting the security risks
associated with a system2

�  Some terminology: asset, attack path, threat, threat model,
threat profile, threat tree or attack tree, vulnerability,
vulnerability landscape

�  Method for system threat modeling (based on Salter et al.3):
�  Identify threats.
�  Create attack trees for the system.
�  Apply weights to the leaves.
�  Prune the tree so that only exploitable leaves remain.
�  Generate corresponding countermeasures.

2Swiderski and W. Snyder, “Threat Modeling”, Microsoft Press, 2004.
3C. Salter, O. Sami Saydjari, B. Schneier, J. Wallner, “Towards a Secure System Engineering Methodology”,

Proceedings of New Security Paradigms Workshop, Sept. 1998.

Risk Analysis Example: Threat Modeling I
Security Testing

© 2018 Aptusinnova Inc.

39

Method for system threat modeling:
�  Identify threats: examine all available details of the system and

enumerate possible threats
�  Create attack trees for the system: for each threat, take the

attacker’s view and find the weak points in the system and the
paths which will lead to realizing the threat

�  Apply weights to the leaves: for each leaf, assign qualitative
values for risk, access, and cost to the attacker

�  Prune the tree so that only exploitable leaves remain: prune
leaves that represent objectives that are beyond the attacker’s
capabilities or that offer an inadequate return

�  Generate corresponding countermeasures: identify counter-
measures for the remaining (most exploitable) attack paths

Risk Analysis Example: Threat Modeling II
Security Testing

© 2018 Aptusinnova Inc.

40

MMORPGs (Massively Multiplayer Online Role-Playing Games1)
Table 1. Characterization of MMORPG

Characteristic Description

Network
Connection

Connected to host server
through Internet

Player
Authentication

UserID and Password

Game
Objectives

Accumulate virtual property
through skillful game play to
reach game objectives.

Number of
Players

A large number of players can
all compete with one another
playing the same instance of
the game.

Payment for
Use

Pay for network connection
time by buying a card
associated with a certain
amount of connection time via a
serial number on the card.

Internet

MMORPG 2
Player B

MMORPG 1
Player C

Player
Database

MMORPG
Gaming
Provider

 ISP

Server

MMORPG 1
Player A

Risk Analysis Example: Threat Modeling III

Security Testing

1e.g. World of Warcraft

© 2018 Aptusinnova Inc.

41

�  Identify threats:
�  By considering the characteristics of a MMORPG system,

obtained the following list of potential threats from an
attacker:
�  Gain illegal access to play the game
�  Cheat at game play
�  Disrupt game play
�  Cheat at paying for game play
�  Steal proprietary parts of the software

�  These threats lead to 5 attack trees. We will consider
the attack tree for “steal proprietary parts of the
software”

Security Testing

Risk Analysis Example: Threat Modeling IV

© 2018 Aptusinnova Inc.

42

�  Attack tree for “steal proprietary parts of the software”

(Threat) Steal
proprietary parts of the
software.

Insider arranges
theft.

Attack on server
containing desired
software.

Bribe
unscrupulous
insider.

Force insider
cooperation
using personal
threat.

Hack into
server and
copy code.

Insider takes
revenge on
company for
some
perceived
injustice.

Illegally enter
premise and
copy code.

Use Trojans to
transmit desired
code or design
documents.

Use social
engineering to
acquire
proprietary
information.

Kidnap
members of
design team.

Security Testing

Risk Analysis Example: Threat Modeling V

© 2018 Aptusinnova Inc.

43 Security Testing

�  Apply weights and prune (combination of M’s and at least 1 H)

(Threat) Steal
proprietary parts of the
software.

Insider arranges
theft.

Attack on server
containing desired
software.

Bribe
unscrupulous
insider. (M,M,H)

Force insider
cooperation
using personal
threat. (H,L,L)

Hack into
server and
copy code.
(L,M,L)

Insider takes
revenge on
company for
some
perceived
injustice.
(L,M,L)

Illegally enter
premise and
copy code.
(H,M,M)

Use Trojans to
transmit desired
code or design
documents.
(L,L,L)

Use social
engineering to
acquire
proprietary
information.
(M,M,L)

Kidnap
members of
design team.
(H,M,M)

Security Testing

Risk Analysis Example: Threat Modeling VI

© 2018 Aptusinnova Inc.

44

�  Identify countermeasures (in yellow)
(Threat) Steal
proprietary parts of the
software.

Insider arranges
theft.

Attack on server
containing desired
software.

Force insider
cooperation
using personal
threat. (H,L,L)

Hack into
server and
copy code.
(L,M,L)

Insider takes
revenge on
company for
some
perceived
injustice.
(L,M,L)

Use Trojans to
transmit desired
code or design
documents.
(L,L,L)

Use social
engineering to
acquire
proprietary
information.
(M,M,L)

Increase
physical
security and
penalties.

Increase
organizational
sensitivity to
employees.
Improve org.
management and
communication
with employees.

Use a combination of
firewall and intrusion
detection. As well, use
obfuscation on the
executables.

Scan and
eliminate all
malware.

Require strict
procedures for
information
disclosure.

Security Testing

Risk Analysis Example: Threat Modeling VII

© 2018 Aptusinnova Inc.

45

!
Recent Research !

© 2018 Aptusinnova Inc.

46

Recent Research
Research

�  Recent published research articles in the ACM Digital
Library deal with the following topics:

�  Testing methods

�  Testing of specific software

�  Test automation
�  Test tools

�  Combinations of the above

�  Testing methods
�  J. Bozic et al. (2014), “Attack pattern-based combinatorial

testing” [6]

�  Extends previous work in combining the attack pattern
models with combinatorial testing in order to provide
concrete test input.

© 2018 Aptusinnova Inc.

47

Recent Research

�  Combination of testing methods and testing of specific
software

�  R. Yang et al. (2016), “Model-based security testing: an
empirical study on OAuth 2.0 implementations” [7]

�  Proposes an adaptive model-based testing framework to
perform automated, large-scale security assessments for
OAuth 2.0 implementations in practice.

�  B. Garn et al. (2014), “On the applicability of combinatorial
testing to web application security testing: a case study” [8]

�  Reports on a case study done for evaluating and
revisiting a recently introduced combinatorial testing
methodology used for web application security purposes.

© 2018 Aptusinnova Inc.

48 Research

Recent Research

�  Combination of testing methods and testing of specific
software (cont’d)

�  J. Bozic and F. Wotawa (2018), “Planning-based security testing
of web applications” [9]

�  A planning-based approach is introduced for modeling and
testing of web applications. The approach provides for
specifying a specific problem and to generate plans,
which in turn guide the execution of a program. In this
way, new testing possibilities emerge that eventually lead
to better vulnerability detection.

�  J. Thomé et al. (2014), “Search-based security testing of web
applications” [10]

�  Presents a technique to automatically detect SQL
injection vulnerabilities through targeted test generation;
uses search-based testing to systematically evolve inputs
to maximize their potential to expose vulnerabilities.

© 2018 Aptusinnova Inc.

49 Research

Recent Research
Research

�  Combination of testing automation and testing of
specific software

�  S. Jan et al. (2016), “Automated and effective testing of web
services for XML injection attacks” [11]

�  Presents a taxonomy of XML injection attack types and
uses it to derive 4 different ways to mutate XML
messages, turning them into attacks (tests)
automatically; further considers domain constraints and
attack grammars, using a constraint solver to generate
XML messages that are both malicious and valid, thus
making it more difficult for any protection mechanism to
recognize them, giving such messages a better chance at
detecting vulnerabilities.

© 2018 Aptusinnova Inc.

50

Recent Research
Research

�  Combination of testing automation and testing of specific
software (cont’d)

�  B. Chu et al. (2016), “Automatic web security unit testing: XSS
vulnerability detection” [12]

�  Presents an automatic testing approach to detect a common
type of Cross Site Scripting (XSS) vulnerability caused by
improper encoding of untrusted data; authors automatically
extract encoding functions used in a web application to
sanitize untrusted inputs and then evaluate their
effectiveness by automatically generating XSS attack strings.

�  Combination of test tools and testing of specific software
�  T. Huang et al. (2018), “ATG: An attack traffic generation tool for

security testing of in-vehicle CAN bus” [13]

�  Presents an Attack Traffic Generation (ATG) tool for security
testing of in-vehicle CAN bus.

© 2018 Aptusinnova Inc.

51

Recent Research
Research

�  Combination of test tools and testing of specific software
(cont’d)

�  M. Azimi et al. (2014), “A security test-bed for industrial control
systems” [14]

�  Proposes a test-bed for evaluating the security of industrial
applications by providing different metrics for static testing,
dynamic testing and network testing in industrial settings;
uses these metrics and results of the three tests to compare
industrial applications with one another from the security
point of view.

© 2018 Aptusinnova Inc.

52

!
Conclusions!

© 2018 Aptusinnova Inc.

53

Conclusions

�  Security testing consists of testing security functionality
and testing vulnerability to malicious attacks

�  Security testing permeates the entire SDLC

�  A risk analysis is essential for security testing

�  Vulnerabilities to be targeted for testing should be
identified in a risk analysis (list of common
vulnerabilities used as input)

�  Security testing requires the expertise of some one who
understands security, development, and testing

Conclusions

© 2018 Aptusinnova Inc.

54

References
1.  C.C. Michael, K. van Wyk, and W. Radosevich, “Risk-Based and Functional

Security Testing”, available Sept. 12, 2018 at: https://www.us-cert.gov/bsi/
articles/best-practices/security-testing/risk-based-and-functional-security-
testing

2.  K. Scarfone, M. Souppaya, A. Cody, and A. Orebaugh, “Technical Guide to
Information Security Testing and Assessment”, NIST Special Publication
800-115, available Sept. 12, 2018 at: https://csrc.nist.gov/publications/
detail/sp/800-115/final

3.  B. Potter, G. McGraw, “Software Security Testing”, IEEE Security and Privacy,
Sept./Oct. 2004.

4.  D. Verdon, G. McGraw, “Risk Analysis in Software Design”, IEEE Security and
Privacy, July/Aug. 2004.

5.  Identity Force, “2017 Data Breaches – The Worst So Far,” retrieved:
February, 2018, https://www.identityforce.com/blog/2017-data-breaches

References

© 2018 Aptusinnova Inc.

55

References (cont’d)
6.  J. Bozic, D. E. Simos, F. Wotawa, “Attack pattern-based combinatorial

testing”, Proceedings of the 9th International Workshop on Automation of
Software Test (AST 2014), pp. 1-7, 2014.

7.  R. Yang, G. Li, W. C. Lau, K. Zhang, and P. Hu, “Model-based security
testing: an empirical study on OAuth 2.0 implementations”, Proceedings of
the 11th ACM on Asia Conference on Computer and Communications Security
(ASIA CCS ‘16), pp. 651-662, 2016.

8.  B. Garn, I. Kapsalis, D. E. Simos, and S. WInkler, “On the applicability of
combinatorial testing to web application security testing: a case study”,
Proceedings of the 2014 Workshop on Joining AcadeMiA and Industry
Contributions to Test Automation and Model-Based Testing
(JAMAICA 2014), pp. 16-21, 2014.

9.  J. Bozic and F. Wotawa, “Planning-based security testing of web
applications”, Proceedings of the 13th International Workshop on Automation
of Software Test (AST ‘18), pp. 20-26, 2018.

References

© 2018 Aptusinnova Inc.

56

References (cont’d)
10.  J. Thomé, A. Goria, and A. Zeller, “Search-based security testing of web

applications”, Proceedings of the 7th International Workshop on Search-
Based Software Testing (SBST 2014), pp. 5-14, 2014.

11.  S. Jan, C. D. Nguyen, and L. C. Briand, “Automated and effective testing of
web services for XML injection attacks”, Proceedings of the 25th
International Symposium on Software Testing and Analysis (ISSTA 2016), pp.
12-23, 2016.

12. B. Chu, H. R. Lipford, and E. Murphy-Hill, “Automatic web security unit
testing: XSS vulnerability detection”, Proceedings of the 11th International
Workshop on Automation of Software Test (AST ‘16), pp. 78-84, 2016.

13. T. Huang, J. Zhou, and A. Bytes, “ATG: An attack traffic generation tool for
security testing of in-vehicle CAN bus”, Proceedings of the 13th International
Conference on Availability, Reliability and Security (ARES 2018), article no.
32, 2018.

References

© 2018 Aptusinnova Inc.

57

References (cont’d)
14.  M. Azimi, A. Sami, and A. Khalili, “A security test-bed for industrial control

systems”, Proceedings of the 1st International Workshop on Modern Software
Engineering Methods for Industrial Automation (MoSEMInA 2014), pp. 26-31,
2014.

References

© 2018 Aptusinnova Inc.

58

Thank you! !
Questions? !

© 2018 Aptusinnova Inc.

59

