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e Desktop computing has had a profound influence on our
ability to solve problems. Consider from engineering:

— Finite Element Method

— Dynamic Simulation
— 3D & 4D Visualization

e Yet, the world is full of problems that have defied solution
using conventional computing techniques...

e ...problems that can often be solved by people with
appropriate training, eg:

— Legal compliance of engineering designs
— Identifying fabrication issues from designs
— Uncoupling superimposed signals



e This class of problems has been a target of artificial
intelligence (AI). Two main approaches:

(1) Classical Al (symbol manipulation):
— Attempts to capture essence of human cognition at a high level
— Some successes, but poor learning capabilities

(2) ANNs (connectionist systems):

— Emulate operation of the brain from a relatively low-level (the
neuron)

— Intent is to achieve higher-level human cognition as an emergent
property
— Some successes, but failed to move far beyond low-level problems

e somewhere just beyond the capabilities of non-linear regression, or pattern
recognition/classification

— Yet biological neural systems promise so much more than this.



® Quick ANN tutorial:

— biologically inspired computing devices composed of many (handful to
billions) of neurons connected within a network:

neurons connections
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— each neuron and its connections implement a simple non-linear
function, comparable to that of a non-linear regression model

— all elements of the ANN work together to solve a higher-order problem

— the broader problem solved by the ANN depends on, for example:
e the connectivity of the ANN (eg: feedforward),
¢ the functions implemented at the neurons and connections (eg: sigmoid & weights)
e the values of ANN parameters (connection weights, neuron biases, etc...)

— these parameters are developed through training, often to solve a set
of example problems with known solutions (supervised training).



e Brief History:
— 1943: McCulloch-Pitts model of neuron (binary 0/1 weights & output)
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— Late 1940s: Hebbian learning (correlates weight change with activity)
— 1957: Rosenblatt, the Perceptron (real weights, learning rule)

— 1969: Minsky & Papert publish Perceptrons (show cannot solve the
XOR problem and computationally too expensive = )

— 1986: Rumelhart et al. rediscover and popularize Backpropagation
(possible to train multi layered non-linear networks)

— 2000’s: Generic ANN tools hit a glass ceiling applications-wise.. Other
Al techiques often outperformed.

— Deep Learning: multi layered. Conceptually been around since the
beginning, but 2010’s started to outperform other Al approaches (GPUs,
training techniques, and specific architectures).



Compare complexity: ANNs vs. Biological Systems vs. General Purpose Digital Computer

ANN’s (s/w emulations = very slow,

simplified neurons = less functionality):
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e Of course, the number of primary processing units usefully
employed is an overly simplistic measure of complexity:

— artificial neurons >> complicated than transistors,
— & biological neurons >> complicated than artificial neurons.

e However, this comparison tells us:

— ANNs may have reached complexity of the Salamander (but
remember these are simplified neurons and simulated therefore
slow);

— the biological model indicates ANN’s have a great potential yet to be
realized.

e [t is possible, today, to build ANNs with billions of neurons:

— however, we don’t know how to make these massive networks
perform useful tasks.

— we know how to use greater network size to achieve greater
precision, but not to achieve greater functionality.
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extend min & max axle loads considered (extend values of dependent variables)

extend range of truck types considered
(extend model internal structure, extend number of dependent variables)

extend range of values for strain readings considered (extend values of independent variables)

T Strain \
Others:

extend bridge lengths considered,
7 == TIME | extend number of lanes, etc...

— extension should be achievable without the model-user having to
completely rebuild the existing model
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® Main characteristics of DLANNS:

- Inspired_bX biological systems (such as primary visual cortex) which
process information across a cascade of many layers.

— Successive layers process information from the previous layer.

— Early layers extract simple features (e.g. boundaries in an imageg, with
later layers identifyin progress_ive‘I:y more abstract (higher order
features (e.g. lines, shapes, facial features, person, etc...)

1st order feature 2" order feature 3" order feature 4t order feature 5t order feature
detectors detectors detectors detectors detectors Etc...




— Unfolde

Input: Current state Output: Next State
(time t+1)

Unfolds to this,...
each layer is architecturally identical

FEEDBACK

Network Modules

1st Layer
Modules

2nd Layer \
Modules
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ing:

Multi-Task Learn

— Similar to transfer learning
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e ultimately performs better as reinforce early stage learning

Learns 2 or more problems simultaneously
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— Similar benefit to transfer learning

e Example Training






® The biological model (brain) suggests that:
— greater complexity = greater cognitive skills
— complexity = f (size, structure)
® However:
— “brain size” on its own is a poor indicator of cognitive skills:
e otherwise Sperm Whale = most intelligent species (8 kg vs. 1.3 kg human)

— (brain size) / (body mass) is also poor indicator:
e otherwise Shrew = one of the most intelligent species

— (brain size) / (expected brain size for body mass) encephalization
quotient (EQ):

¢ humans most intelligent species (7.6 human vs. 4.6 freshwater dolphin)

— (brain size) — (expected brain size for body mass) gives brain mass
available for purposes other than body monitoring and control:

e humans = most intelligent species
® Possible future:

— richly structured networks (not just more layers, but more structure
laterally and hierarchically, and hierarchical recursion...)

— richly structured training schemes (learn in stages, not just transfer and
multi-task learning...)



e How do you develop massive, richly structured ANNs that
solve non-trivial problems?

e (Can it be done using a training mechanism?
— generally these are used to develop weights not ANN structure

— a few training mechanisms can develop simple structure, eg:
e Cascade Correlation (number of hidden neurons)
e Kohonen Networks (connectivity at 15t level)

— ...but not complex structures

e Inspiration from biological models (copy their structure)?

— researchers have done for the early stages of the visual system but
nowhere near complete understanding yet

— ... moreover, most engineering problems don‘t have biological
analogs with ready solutions

¢ Could turn to simulated evolution (eg: Genetic Algorithms
(GA's)) for a solution



® GA's has been used in engineering to develop ANN’s for
many years

...but limited to single network units, not complicated structures

e Special challenges for GA’s in developing massive, richly
structured ANNs. Must be able to develop structure at the:

macro-level (connectivity between the higher-level units)
meso-level (connectivity between neurons within a unit), and
micro-level (the mode of operation of the neurons and their links)
and do so for very large numbers of neurons (thousands/millions)

e This requires a sophisticated genetic coding system:

if millions of neurons, don‘t want code with millions of genes
...cumbersome and slow to evolve

one possibility is the use of growth algorithms

...simpler codes, especially when repetition in ANN structure:
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e could enhance this approach with multi-stage objective
functions






® The aims of strategizing are:

Identify the objectives of the study
Determine a likely appropriate set of input variables

Gain a feel for how the system being modelled responds to
different variables, e.q.

® Linear vs non-linear;

® Stochastic vs. deterministic, etc...

e Questions to be answered at this stage:

What type and structure to adopt for the model?
What development algorithm to adopt?
What is the objective function?

What are the sources for information and what new studies will be
required to acquire the necessary data for training, model
selection, and validation.

¢ A pilot study may be required to help answer these
questions and to determine feasibility.



¢ Gaining a graphical understanding of the problem can be
extremely useful at this stage:
— Plotting each output variable against each of the input variables:
e Relevance of each input variable

e Complexity of the response of the system — e.g. linear vs. non-linear
e Existence of unexplained variance in the response of the system

— Plotting each of the input variables against each other
e Determine correlation between inputs

— Both approaches illustrated in the following two figures:
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Step 1: Strategizing

Plotting Output vs. Input for a Set of Existing Observations
of the Response of a System
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Plotting Input vs. Input for a Set of Existing Observations of
the Response of a System
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Step 1: Strategizing

e Understanding a problem is critical to selecting an
appropriate type of model:
— Consider the following:
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Step 1: Strategizing

Fitting Functions of Different Complexity to a Set of Observations
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e Most empirical modelling studies require 3 sets of data:
— Training data set — used to develop the model

— Testing data set — used to compare the performance of
alternative models and variants of the model

— Validation data set — used to make a final validation of the
performance of the final model

® Each of these data sets must be assessed or designed to
make sure that it is representative of the problem.

e An appropriate data set size is dependent on:

— complexity of the problem...

— ...and may be determined through sensitivity analyses
e An appropriate data set distribution is dependent on:

— form of the problem (some areas may require higher
density of observations)...

— ...and may be assessed using graphical plots:



Distribution of 12 Observations Across the Problem Domain

P i = problem domain; + = observation data points
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Step 2: Data Collation and Evaluation

e \Where you can control the set of observations used for
modelling:
— Make sure all observations cover the entire problem domain

— Many layout schemes are available, but make sure appropriate
for the problem at hand

— If use a regular grid, the testing and validation sets should
normally still be randomly positioned
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Distribution of Observations Collected from Controllable Systems
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e Whereas step 1 (strategizing) identified a conceptual
design for the model,...

e ...step 3 develops the finalized design for the model.

® Progress in training can be monitored for both the
training data set and the testing data set:

— Training terminates where the testing data set performs
optimally...

— ...going beyond this point can cause ‘overtraining’
(memorization);

— consider the following:




Progress in Model Development for Studies that use Search Algorithms
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Step 3: Model Development

e Some model parameters are not adjusted by the model
development/training algorithm, e.q.:
— Number of layers in a neural net
— Number of neurons in a layer of a neural net
— Number of observations used for training
— Set of input variables used, etc...

® These will need to be adjusted manually, and in a
methodical way:

D I



Searching for an Input Configuration for a Model (Excavation)
that Minimizes the Testing Error
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® The study at this stage may have generated several
candidate models

® These should be thoroughly evaluated using the testing
data set to select the best

¢ Performance should not be based just on the objective
function...

e . .the performance across the problem domain should
also be considered to look for consistency in
performance:
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Evaluating Error across the Problem Domain
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Step 5: Final Validation

e At this stage we have the final version of the model

® This needs to be validated:
— to get an accurate assessment of its performance
— to see whether further development may be required

e Should not use the testing data set for this as the model
may have some bias towards it

e Requires a 3" independent data set.
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Step 6: Implementation and Review

® Education of end-users:

— Collection and organization of input data to ensure model
validity

— Interpretation of the output from the model
— Usage of the model for problem solving

e \Where possible, feedback from use to continue validation
and improvement of the model.
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