Approaches for identifying & selecting the right data

Sandjai Bhulai Vrije Universiteit Amsterdam

IARIA panel discussion Tim vor der Brück Gaia Ceresa Gerald Fahner Gregor Grambow

Faculty of Science

The era of data

The dangers of models

- We live in the age of the algorithm
- Increasingly, the decisions that affect our lives are being made not by humans, but by mathematical models
- In theory, this should lead to greater fairness: everyone is judged according to the same rules, and bias is eliminated

The dangers of models

What are models doing?

- Inaccurate predictions versus "accurate" (≠ perfect), but unethical
 - > discrimination by gender, race, religion
- Is it customer centric or organization centric?
 - > an average person versus each individual?
- Based on what data?
 - > Biases, noise, ...
- With help of what (big) data analytics?
 - > Can a chosen approach give an answer to the set optimization goal?

Example: Google ads

- "setting the gender to female resulted in getting fewer instances of an ad related to high paying jobs than setting it to male" Automated Experiments on Ad Privacy Settings http://www.andrew.cmu.edu/user/danupam/dtd-pets15.pdf
- ads for arrest records were significantly more likely to show up on searches for distinctively black names or a historically black fraternity

http://dataprivacylab.org/projects/onlineads/1071-1.pdf

 target people who live in low-income neighborhoods with high-interest loans

Example: Google

Example: Amazon recognition

Amazon's Face Recognition Falsely Matched 28 Members of Congress With Mugshots

28 current members of Congress

False

Color

Matches Who Are People of

Example: word embeddings

 In natural language processing, it is common to learn embeddings from large text corpus (1-100B words) or download pre-trained embedding online

Example: word embeddings

- Reasoning with language:
 - > Man:Woman as Boy:Girl
 - > Ottawa:Canada as Nairobi:Kenya
 - > Big:Bigger as Tall:Taller
 - > Yen:Japan as Ruble:Russia
- But also:
 - > Man:Woman as King:Queen
 - > Man:Computer_Programmer as Woman:Homemaker
 - > Father:Doctor as Mother:Nurse

Impact of wrong data

- Police, security, intelligence screening suspects
- Judges deciding on pre-trial period of suspects
- eCommerce cookie-based price adjustments
- Education giving a (negative) study advice
- Medical diagnostics, personalized medicine, ...
- Mortgages, car insurances, CV screening, jobs, salaries, funding decisions, ...

Responsible data analytics

Obtaining and combining domain specific corpora for creating word vectors

1 **6A**_n

Tim vor der Brück

Obtaining and combining domain specific corpora for creating word vectors

Task we deal with: Creating word vectors using word2vec to analyze user answers in an online contest

Issues

- How to obtain a large Swiss German corpus where the participants expressed themselves in youth language?
- How to combine the domain specific corpus with a large general one like Wikipedia as input for Word2Vec?

How to obtain the domain-specific corpus

Possible solutions:

- Crawling the web (how to come up with suitable keywords?)
- Access domain-specific repositories (where to find good repositories ?)
- Create artificial data employing a Generative Adversarial Network (GAN)
- Additional suggestions?

How to combine the domain-specific text corpus with a large general corpus before applying Word2Vec

Possible solutions:

- Concatenation of the corpora
- Oversampled concatenation (assign the small domain-specific corpus more weight)
- Create two different set of word vectors and combine them afterwards
- Additional suggestions?

How to pre-process the data all at once, when they are a thousands of historical series with very different profiles and distributions

Gaia Ceresa

The Seventh International Conference on Data Analytics DATA ANALYTICS 2018 November 18 to 22, 2018 - Athens, Greece

How to pre-process the data all at once, when they are a thousands of historical series with very different profiles and distributions. Gaia Ceresa

RSE S.p.A. - Ricerca sul Sistema Energetico, Milano, Italy

Panel on Advances in Data Processing Approaches for Identifying/Selecting the Right Data

NexTech 2018, November 18-22, 2018 - Athens, Greece

RSE

Ricerca Sistema

Energetico

Significant series?

Ricerca sul Sistema Energetico - RSE S.p.A.

Missing Values and Zeros

Missing Values

- If more than $30\% \rightarrow$ variable removal
- If less than 30% and scattered in the series \rightarrow replacement
- If less than 30% and concentrated in a block \rightarrow replacement or removal

Many 0:

- Error of the measurement system \rightarrow removal
- Real production \rightarrow analysis

So:

If 0 more than 70% \rightarrow removal

If 0 less than 70% \rightarrow analysis o the variable

(it gives a bad behaviour if used in a training/testing set)

Outliers detection

Outliers detection

Outliers detection method

• Outliers detection

a) Method based on the **Chebyshev inequality** $P(|X - \mu| \ge n\sigma) < \frac{1}{n^2}$. Outliers stay out of the interval

$$[\mu - n\sigma, \mu + n\sigma], n = 3$$

b) Method based on **Quartiles**. Outliers stay out of the interval

$$[Q1 - n(Q3 - Q1), Q3 + n(Q3 - Q1)], n = 3$$

and pass the MAD test
$$\frac{|X_i - median(X_i)|}{median(|X_i - median(X_i)|)} > 5$$

The largest set is selected, named OUTL.

$$|OUTL| \le 7\%N$$

 $es \rightarrow removing \ outliers \rightarrow missing$ $no \rightarrow preserving \ outliers$

35 30

Nvar Mvar

G. Ceresa, A. Pitto, D. Cirio, N.Omont "Algorithm for Automatic Description of Historical Series of Forecast Error in Electrical Power Grid". Proceedings of 4TH Conference of the International Society for Nonparametric Statistics ISNPS 2018. Springer. Available in 2019.

gaia.ceresa@rse-web.it

Data selection guidelines for credit scoring

Gerald Fahner

Hierarchy of Data Sources for Credit Scoring

Social network

© 2018 Fair Isaac Corporation. Confidential. 1

FICO

FICO's Alternative Data Selection Guidelines

Regulatory Complianc <mark>e</mark>	The data source must comply with all regulations governing consumer credit evaluation.
Depth of Information	Data sources that are deeper and contain greater detail are often of greater value.
Scope & Consistency of Coverage	A stable database covering a broad percentage of consumers can be favorable.
Accuracy	How reliable is the data? How is it reported? Is it self-reported? Are there verification processes in place?
Predictiveness	The data should predict future consumer repayment behavior.
Orthogonality	Useful data sources should be supplemental or complementary to what's captured by other data sources.

Combining different approaches enabling a consistent workflow for data analytics including pre- and post-processing

1991 V

Gregor Grambow

Combining different approaches enabling a consistent workflow for data analytics including pre- and post-processing

Gregor Grambow Computer Science Dept. Aalen University

Data Science – holisitcally?

Research Activities

Gregor Grambow, Aalen University

Research Activities

Gregor Grambow, Aalen University

Research Framework

Research Framework

19.11.2018

Gregor Grambow, Aalen University

Special Topic: Parallelized Machine Learning?

- Hadoop provides capabilities to do machine learning in the cluster
 - SparkMLlib
 - Processes Keras / TensorFlow models
- Various advantages
 - Scalability and especially elasticity
 - Infrastructure for
 - Distributed data storage
 - Data ingestion
 - Various types of data processing
 - Query facilities