
Stephen Clyde, Utah State University, USA
Radek Koci, Brno University of Technology, Czech Republic

Luigi Lavazza, Università degli Studi dell’Insubria, Italy
Arash Ramezani, University of the Federal Armed Forces Hamburg, Germany

Roy Oberhauser, Aalen University, Germany (Moderator)

“The application of a
systematic, disciplined, quantifiable approach

to the
development, operation, and maintenance

of software;
that is, the application of engineering

to software.”
[ISO SEVOCAB]

2©2017 Roy Oberhauser

§ Computer Engineering
§ Systems Engineering
§ Computer Science
§ Mathematics
§ Project Management
§ General Management
§ Quality Management

3©2017 Roy Oberhauser

1968 NATO conference in Garmisch, Germany

4©2017 Roy Oberhauser

50 years ago it was not a “Celebration”

Born in pain

50’s: SE is like HW engineering [Thesis]

60’s: Software crafting [Antithesis]

SE Crisis
70’s: Formality & waterfall processes [Synthesis & Antithesis]

80’s: Productivity & scalability [Synthesis]

90’s: Concurrent vs. sequential processes [Antithesis]

00’s: Agility & value [Antithesis and Partial Synthesis]

10’s: Globalization & SoS [Antithesis and Partial Synthesis]

5©2017 Roy Oberhauser

[Boehm, B.: A View of 20th and 21st Century Software Engineering, ICSE’06]

50
 y

ea
rs

§ Reuse+sharing: Building on tested SW
§ Human- and value-centric, iterative processes
§ Design patterns
§ Integrative testing
§ Coding practices
§ Tool chains and automation

6©2017 Roy Oberhauser

§ Containment of defect costs to society
§ Ulterior ethics seep into systems (power/manipulation)

ú Dieselgate, Exploits, etc.
§ Complex, self-adapting, distributed SoS (IoE/CPS)

ú Risk containment, illusion of control, opaqueness
§ IT and operational runtime integrity

ú Misconfiguration, model coherency verification
§ SE education and certification

ú Rapid technology cycle challenges
§ Maintenance (legacy, abandoned non-supported code)

7©2017 Roy Oberhauser

§ “Software Eats the World” and its variants
§ Increased automation → Automated SE

ú Testing, bug fixing, maintenance, legacy code
§ Cognitive processing / Intelligent adaptation

ú Testing, reproducibility challenges
§ Attention on security
§ Quantifiable quality analytics and assurance
§ DIYSW / BYOS

8©2017 Roy Oberhauser

Thoughts on
“Software Engineering
Achievements and Their Evolution
Transcending Multiple Disciplines”

STEPHEN CLYDE

UTAH STATE UNIVERSITY

Complexity – A Driver for Innovation

 Software systems can be extremely complex
 Lots of components

 Lots of “moving” parts

 Lots of dependencies

 Lots of stakeholders

 The processes of creating software systems are also complex

 The need to manage complexity as spawned innovations for

 Conceptual modeling

 Development languages and tools

 Development processes

One transcendent contribution:

“Agile” Methodology

Values

Principles

Practices

Processes

Diagram from
Emergn

Enhance Health
Information
Exchange
Software

Backlog To Do In Progress Done

Stephen: Professional Career Scrum Board

Commercial
Apps Health

Care

Ph.D. is CS /
Software

Engineering

Become a
Better SE
Teacher

Research in
Comm. Design

Patterns

Research in
High-level
Aspects

Commercial
Apps

Transportation

Launch Business
For Driver

Education App

Business For
Driver

Education App

Build
Planning
Tool for

Hydrology
Research in

Core SE
Principles

Sabbatical

Come Up to
Speed on
Simplicial

Complexes

Research in
Software
Testing

Learning to
Paint

Design mini-
course on S.E.
Principles and

Practices

Commercial
Apps

Inventory

Cross-discipline Retrospective on
Software Engineering

1970 1980 1990 2010 20202000

Programming viewed primarily a
supporting task to other disciplines

SE struggled to establish itself,
adapting its principles, processes and

practices from other disciplines

Other disciplines adopt
SE ideas, principles, process,

and practices

Examples

Algorithms
Optimal stopping

 Explore/Exploit

 Sorting

Caching

Conceptual modeling

Agile principles, practices,
and processes

 Scheduling

Randomness

Networking

are more

Questions

What’s next?

What ideas or lessons learned from software
engineering can be generalized and

adapted into other disciplines?

What do software engineers need to do to
leverage advances from other disciplines

and conversely?

Modeling and simulation in software

engineering: Can we effectively

involve software models in

development processes?

Radek Kočı́

Brno University of Technology, Faculty of Information Technology

Czech Republic

koci@fit.vutbr.cz

ICSEA 2017, 8.-12.10.2017, Athens, Greece

Models in software engineering

Software engineering

• Software engineering is about managing changes –
requirements change

• Identifying and clarifying incomplete and inconsistent
requirements, as well as managing changes, are an
important part of requirements engineering.

• complex system ⇒ a need to describe all aspects of
designed systems, impossible without an abstraction, i.e.,
impossible without models!

Modeling and simulation in software engineering: Can we effectively involve software models in development processes? 2 / 9

Models in software engineering

How models can be used

• models can be an ”intermezzo” in the process of
requirements specification as well as the result of this
process

• models can be used for requirements validation – a need
for model simulation

• models can be used as prototypes or application – a need
for model simulation

⇒ different levels of abstraction and formalization

Modeling and simulation in software engineering: Can we effectively involve software models in development processes? 3 / 9

Specification documents

• plain text, tabulars, . . .

• semi-formal laguages (diagrammatic notation)

• diagrams, models like ERD, UML, . . .
• elements and relationships have formal base, properties or

characteristic are decribed informally
• only simulation of control flows

• formal languages
• provide higher precision and richer forms of analysis
• simulation works with all modeled characteristics
• (but) are usually harder to use and less widely applicable

Modeling and simulation in software engineering: Can we effectively involve software models in development processes? 4 / 9

Requirements elaboration

Modeling and simulation in software engineering: Can we effectively involve software models in development processes? 5 / 9

Models transformation

Model Driven Engineering

• models having different levels of abstraction

• Computational Independent Model (CIM) – use cases,
activity, sequence, ...

• Platform Independent Model (PIM) – does not include any
technology specific details; other UML models, detailed
UML models, ...

• Platform Specific Model (PSM) – includes technology
specific details, library classes, etc.

The transformation becomes more demanding with a higher
degree of abstraction of models

Modeling and simulation in software engineering: Can we effectively involve software models in development processes? 6 / 9

Relationships between model and code

Problem with modeling and changing requirements

• if a requirement is depicted in analysis, it is repeated in
design and implementation

• code changes to fix problem with the original requirements
⇒ requiring changes to the analysis and design models

• the boundaries between models are blurred, it is not always
apparent what needs updating when the code is changed

Modeling and simulation in software engineering: Can we effectively involve software models in development processes? 7 / 9

Modeling is time-consuming activity

Can we eliminate the overhead caused by creating different
models and managing the relationship between models and
code?

• continuous incremental development of models, no need
of transformation

• models combine formal structures with programming
languages

• models are simulated in live system under real conditions

• no need of implementation or code generation

• for efficiency reasons, the resulting models can be
transformed into code (code generation)

• there has to be no difference between code and models
from the developer point of view

⇒ model continuity

Modeling and simulation in software engineering: Can we effectively involve software models in development processes? 8 / 9

[plain]

Thank you for your attention!

Università degli Studi dell’Insubria
Dipartimento di Scienze Teoriche e Applicate

Past and future of software engineering

(nothing less!)

Luigi Lavazza

Dipartimento di Scienze Teoriche e Applicate

luigi.lavazza@uninsubria.it

Methods

How to deal with software development and related activities

Techniques

How the software should be written and structured

Tools (it would be funny if we did not use computers …)

Panel on Software EngineeringICSEA 2017 - 2 -

What is SE?

A few “milestones”

When I began writing code (1982)

Tools: editor, compiler, make, symbolic debugger, sccs, diff

Methods: structured programming, modularity principles

In 1996 (interviews of newly graduated software engineers)

Q: What is used in your organization?

A: IDE, configuration management

Today

Methods

Lifecycles, reuse, refactoring, continuous integration, etc.

Techniques

Patterns, services, architectures, ...

Tools

Plenty, covering all development activities, from requirements

gathering and modelling to automated testing.

Panel on Software EngineeringICSEA 2017 - 3 -

A breakthrough happened in the late 90’s

More and better exchanges between industry and research

Demands from developers

Better support for coding, simpler and affective processes, best

practices, …

Proposals from researchers

Object-oriented programming, Java, patterns, distributed architectures,

…

Proposals whose origin I do not know with certainty

Continuous integration, devops, agile processes, microservices, …

Panel on Software EngineeringICSEA 2017 - 4 -

The (already started?) future

What is Software Engineering?

The same as before (methods, techniques, tools, etc.)

BUT

With tight connections with “other worlds”

Big data

Security

User experience

Blockchain-related developments

…

Panel on Software EngineeringICSEA 2017 - 5 -

The (already started?) future

Economics of software development (wrt to economics of business)
is going to be quite DIFFERENT with respect to a few years ago.

Panel on Software EngineeringICSEA 2017 - 6 -

t

$

T

The traditional situation.

You start using the software

product after it has been

completed.

Economics of software development (wrt to

economics of business)

The Agile (incremental) approach

Panel on Software EngineeringICSEA 2017 - 7 -

t

$

T Tagile

Agile development provides

better revenues, even though the

sheer development takes longer

and costs more.

Technical issues

Requirements change. Being able to adapt software wrt to changes in the
(business) environment is of outmost importance.

Panel on Software EngineeringICSEA 2017 - 8 -

t

$

Tagile

To keep the cost and

duration of maintenance

small, we need god quality

software!

My conclusions

As software engineers, our mission will not change:

We shall work at improving software development

To make it as easy, fast, reliable, etc. as possible, to meet the

requirements from users and the market

But, we shall need to

use knowledge, techniques, tools, etc. from other “foreign” domains

stay as close to the business needs as possible

pursue high quality levels, especially concerning the adaptanbility and

extendibility of software

Software is growingly pervasive and complex

And so is software engineering

Panel on Software EngineeringICSEA 2017 - 9 -

1

The Twelfth International Conference
on Software Engineering Advances

PANEL on SOFTWARE ENGINEERING
Topic: Software Engineering Achievements and Their Evolution

Software Driven Development of Modern Armor Structures

October 11, 2017

Dr.-Ing. Dipl.-Math. Arash Ramezani &
Univ.-Prof. Dr.-Ing. habil. Hendrik Rothe
Helmut-Schmidt-University
University of the Federal Armed Forces Hamburg
Holstenhofweg 85, D-22043 Hamburg

Dr.-Ing. Dipl.-Math. Arash Ramezani
Terminal Ballistics / Ballistic Protection

Numerical Simulation and Computer-Aided Engineering

2

Biography

• Arash Ramezani currently works for the University of the Federal Armed
Forces.

• He has studied Applied Mathematics at the University of Bremen and the
University of Queensland in Australia and received his Diploma degree in
2010.

• In 2015 he received his doctor's degree in engineering science with his
studies on

 "Numerical Simulation of Terminal Ballistic Processes for the
Analysis of Selected Armor Structures and the Optimization of
Modern Security Vehicles".

• His research interests include modeling, simulation and visualization of
ballistic problems.

Dr.-Ing. Dipl.-Math. Arash Ramezani
Terminal Ballistics / Ballistic Protection

Numerical Simulation and Computer-Aided Engineering

3

Software Driven Development
of Modern Armor Structures

 The threat imposed by terrorist attacks
is a major hazard for military
installations, vehicles and other items

 An important endeavor of international
research and development is to avert
danger to life and limb

 Ballistic testing is limited due to costs
and permissions for experimental results

 This is why numerical simulations are
more frequently applied than
experimental tests which are thus being
replaced gradually

Dr.-Ing. Dipl.-Math. Arash Ramezani
Terminal Ballistics / Ballistic Protection

Numerical Simulation and Computer-Aided Engineering

4

Software Driven Development
of Modern Armor Structures

In order to deal with problems involving the release of a large amount of
energy over a very short period of time, e.g. explosions and impacts, there
are three approaches:

 As the problems are highly non-linear and require information
regarding material behavior at ultra-high loading rates which is
generally not available, most of the work is experimental and thus
may cause tremendous expenses

 Analytical approaches are possible if the geometries involved remain
relatively simple and if the loading can be described through
boundary conditions, initial conditions or a combination of the two

 Numerical solutions are far more extensive in scope and remove any
difficulties associated with geometry

Dr.-Ing. Dipl.-Math. Arash Ramezani
Terminal Ballistics / Ballistic Protection

Numerical Simulation and Computer-Aided Engineering

5

Software Driven Development
of Modern Armor Structures

Fields of application:

 Simulation of impacts

 Ballistic protection

 Energetic systems

 Wave propagation

 Force of detonation

 Testing of materials

Dr.-Ing. Dipl.-Math. Arash Ramezani
Terminal Ballistics / Ballistic Protection

Numerical Simulation and Computer-Aided Engineering

6

Software Driven Development
of Modern Armor Structures

Evaluation:

Conformity?

model modification

Dr.-Ing. Dipl.-Math. Arash Ramezani
Terminal Ballistics / Ballistic Protection

Numerical Simulation and Computer-Aided Engineering

7

Software Driven Development
of Modern Armor Structures

 In order to have a sufficient data base for the simulation, some actual
testing must be done prior to the simulation

 Each shot is being recorded with a high-speed-camera and then analyzed in
detail

 The fragments of the projectile must be caught and analyzed in the
following

Dr.-Ing. Dipl.-Math. Arash Ramezani
Terminal Ballistics / Ballistic Protection

Numerical Simulation and Computer-Aided Engineering

8

Software Driven Development
of Modern Armor Structures

14,0 x 10,3

5,2 x 6,5

5,2 x 4,9

2,3 x 2,3

Dr.-Ing. Dipl.-Math. Arash Ramezani
Terminal Ballistics / Ballistic Protection

Numerical Simulation and Computer-Aided Engineering

10

Software Driven Development
of Modern Armor Structures

Challenge:

 The materials of the test objects are normally unknown – they have to be
created and optimized for the calculation, so that the material behavior in
the simulation can be conveyed in an exact manner

Simulation

Experiment

Dr.-Ing. Dipl.-Math. Arash Ramezani
Terminal Ballistics / Ballistic Protection

Numerical Simulation and Computer-Aided Engineering

11

Software Driven Development
of Modern Armor Structures

Challenge:

 The mesh used in CAD model has to be as detailed as possible, as
particularised as necessary

Dr.-Ing. Dipl.-Math. Arash Ramezani
Terminal Ballistics / Ballistic Protection

Numerical Simulation and Computer-Aided Engineering

12

Software Driven Development
of Modern Armor Structures

Challenge:

 Regarding significant places, the models must be refined and the elements
must be minimized

Dr.-Ing. Dipl.-Math. Arash Ramezani
Terminal Ballistics / Ballistic Protection

Numerical Simulation and Computer-Aided Engineering

13

Software Driven Development
of Modern Armor Structures

Outlook:

 Based on a detailed CAD model, the actual behavior can be described in a
virtually exact manner

 New concepts and models can be optimized using numerical simulations

 Due to the acquired findings, facilities and vehicles can be more accurately
protected against terrorist threats

Dr.-Ing. Dipl.-Math. Arash Ramezani
Terminal Ballistics / Ballistic Protection

Numerical Simulation and Computer-Aided Engineering

14

Software Driven Development
of Modern Armor Structures

Traditional ballistic testing:

Testing a bulletproof vest in Washington, D.C. (September 1923).

Dr.-Ing. Dipl.-Math. Arash Ramezani
Terminal Ballistics / Ballistic Protection

Numerical Simulation and Computer-Aided Engineering

