From Language-Independent
Requirements to Code Based on a
Semantic Analysis

Authors:
Mariem MEFTEH
Nadia Bouassida

Hanéne Ben Abdallah

23/11/2017 017 1



1. ~ Context and Motivations

2. “A\im of thiswork

=

3. “state of the art

4. ~ Our approach for source code extraction from requirements

S. “Evaluation
6. “Conclusion

7. ~Futurework




Programming languages in Programmers are forced to update
always their knowledge to: ®

-
* Recover this progress =g
* Be able to use them H”

orogress




IPUBET

AN BOnjour
y Hallo

ZhICEHR

o

e |deas are almost the same if we express them in several
languages.
e They would be valid as long as the language, in which they

are expressed, exists and is understood by people.



SR

’?ﬁ <3
5 ¥
54

e Pegasus : new, naturalistic programming language. 2k
PEGASUS
=» Naturalistic Programming = writing computer programs

with the help of a natural language.

e Pegasus accepts instructions written in a semi-natural

language.

e Pegasus produces the respective program accordingly.



1. Works for Information Extraction from Texts

e.g. the Frame semantics approach [Fillmore, 1976,

2010][Ruppenhofer et al., 2010]
= They are relevant for specific domains.

= The information of the type of a sentence (e.g., a definition, a
statement, an assignment, etc.) cannot be determined by the

frame semantics approach



Works for Source Code Generation from Textual Requirements
Texts

e [Francu et al., 2011]: Produce an implementation in the form of
methods.

— Necessity of a manual processing to build a domain model,
required by the generator.

e [Smialek et al., 2012, 2015] [Nowakowski et al., 2013] [Kalnins et al.,
2014]: Transform the requirements, in particular behavior scenarios
written in a semi-natural language, into Java code.

— The use case scenarios must be pre-processed and written in a
semi-natural language (RSL)

e [Liu et al., 2005] [Cozzie et al., 2012] [Ozcan et al., 2004]: Generate
code from texts

— Use of simple mapping models that map nouns to objects and
arguments, verbs to methods and adjectives to attributes

The majority of the existing approaches treat only requirements
itten in one single language (English in most cases)



" In this work, we present our approach and its tool, entitled

CRec-tool, for extracting source codes from language-

independent requirements

v’ Challenges:

— Accept requirements written, theoretically, in any natural language.

— Not require a manual transformation of the requirements into the
syntax of a specific language.

=>» These two merits rely on the concept of semantic model

— Rely on this model as a solution to hold (almost) all the semantics of
the input requirements written in a purely natural language.



Language-Independent

Semantic

requirements

Refinment

model

English mapping
rules

Transformation
Rules

\ 4

Pegasus

A 4

code

Pegasus f
generator

Target Java

code




Semantic model meta-model

sentence

Concept possession relation

Link_Semantic_clasg

Compressiol
+type

Assignment

Initialization

Symbol self

Atomic Complex

Anonymous attribute

+name
+quantity
+ordinality

Possessive

Statemen

property statement

Instance type relation Concept hierarchy relation

Relative

Predicate statement

Explicit

Argument

Pronoun

AttributeRelation

. +semantic_role
Predicate | -

+class
+label




xample: Concept possession relation mapping rule =
(definition/ statenent,
concept possession rel ation,
(possessor," possessor_concept "),
(possessed, " possessed concept "))";

For instance, the clauses:
e “Abook has a three-letter key” (in English)
e “Un livre a une cle de trois lettres” (in French)

=» They convey to one common representation within the semant
model, as follows:
(statenent, concept possession relation,

(possessor, (book, (quantity/ordinality, abstract))),
possessed, (key, (quantity/ordinality, abstract),

hree-letter)))



The semantic model is able to:

Extract relevant information even from quite complex
and ambiguous sentences.

Treat language-independent texts from which it extract
relevant information useful for different purposes (e.g. SPLs,
code generation, text translation...)



CodeRec-tool (Code Recovery tool) implements our approach using the

NOOQOJ environment.

= |t allows generating a Pegasus code, as an input to the Pegasus f
generator, by starting from requirements written in different and in

purely natural languages.
= Actually, this tool accepts the French and the English languages.
v Developing a NOOIJ syntactic/semantic grammar for each language.

v’ These grammars allow to synthesize mapping rules in English, in
cooperation with the predefined NOOJ dictionaries for the English

and the French languages, as well as the Google Translate API



1. Goal:
* Showing the ability of our approach in deriving useful Pegasus codes
(implicitly good Java codes) from input requirements, written in purely
and in several natural languages.
* Examining the conformity degree between our Pegasus codes and those
built by Pegasus experts.

2. Subject and Preparation:
* Relying on the use case scenarios belonging to five different domains:
* Health complaint application
* The use case “Withdraw cash” belonging to a banking system
* Go-phone system
* Crisis management system
e Game of war cards
e Emptio application
* Giving them to two Pegasus experts (two natural language processing PhD
students from our laboratory, who are familiar to Pegasus programs)



. Task: We asked the Pegasus experts to give us the correct Pegasus

codes corresponding to the adopted subjects.

4. Conduction: Comparing the experts’ Pegasus codes to the
corresponding ones generated by our tool by using:
= The precision and recall metrics in terms of Pegasus concepts,
properties and actions.
= Two other metrics taken from the standard ISO 25020:

Completeness and Correctness



Average Precision Recall Complet. | Correct.
Concepts 73.78% 91,60% 90,43% 80,13%

Properties 81,59% 82,66% 78.41% -
Actions 70,22% 82.41% 76.78% 83,02%

5. Evaluation:

 High average values of the adopted metrics.

 High average values of completeness and correctness.

=>» Our tool generates a good number of true positives, vs. a low number
of false positives.

=>» The code generated by our tool is of a high quality and helps the
developers in the programming task by saving their time, and thus

money for the companies.



hreats to validity

- The version Pegasus_f of code generator has not yet been finished totally
- There are still some small improvements to integrate in this project,
=>» However, the current version of Pegasus f is powerful and it generates good results,
shown in our evaluation.

- A grammar should be created for each integrated language in order to synthesize

the mapping rules.

=>» However, the creation of this grammar is done only one time.
- Generation of an important number of concepts and actions (and thus Java classes

and methods).
=>» However, the unnecessary classes and methods generated by our approach will be latter

removed by the programmer when revising the generated version of source codes.

DUr approach is dependent from the input requirements.



New, original approach for extracting source code from requirements
written, theoretically, in any and purely natural language.

e The developers will save time because they are not obliged to create
the initial classes of the system or to import the required packages.

e Qur approach is implemented by the CodeRec-tool.
e Qur approach is very simple

— It does not necessitate any pre-study on a particular language to be used.

— It accepts language-independent descriptions, understandable even by a
non-IT person.

e Qur approach is abile to be used with many code generators, not
necessarily Pegasus_f.

The research that we presented in this paper constitutes a contribution in
programming using any and purely natural language thanks to the
semantic model.




Conduct an evaluation on a larger set of products to confirm

the presented results.

e Application of our approach on other code generators, such as
the ReDSeeDS tool, which extracts a Java code, following a
Model/View/Controller architecture, from use case scenarios

written in the RSL language.



I Thank you I




