Feeling the (Pain of) Convergence: mmWave, 5G, SDN, NFV, IoT, ION, MEC, ...

Richard Li, PhD

Chief Architect, Future Networks Huawei USA Renwei.Li@huawei.com

HUAWEI TECHNOLOGIES CO., LTD.

Expectation Always Grows with Success!

Expectation for runners:

- When you run 100 meters in 10 seconds, you are expected to run it in 9.5 seconds
- When you reach 9.5 seconds, you are expected to run it in 9 seconds
- You will always be expected for something newer and harder!

Expectation for the Internet

- **TCP/IP** was initially expected to send/receive "lettergrams"
- When the Internet can successfully support "textual" applications, it is expected to support "image applications"
- When the internet can support "voice applications", it is expected to support "video" applications
- When the internet can support video applications, it is expected to support "immersive experience" applications. But can it really support it?

Evolution of Internet Applications

AR/VR: New Way to Live, to Play, to Work, to Share, to Design, to Experience, to Go beyond the Screen

Source: Modification of https://www.youtube.com/watch?v=aThCr0PsyuA

Can the Internet Support any New Applications?

Panelists

- **Tommy Svensson:** Challenges and Opportunities with mm-wave Communications in 5G
- **Valerio Frascolla:** Mobile Edge Computing, a key building block for 5G networks
- Eugen Borcoci: Centralized SDN control in distributed IoT environment is it possibly an efficient cooperation ?

Thank you

www.huawei.com

HUAWEI TECHNOLOGIES CO., LTD.

Page 7

Panel on Communications on ICN & SPACOMM

Topic: Feeling the (Pain of) Convergence: mmWave, 5G, SDN, NFV, IoT, ION, MEC, ...

SDN, NFV, MEC.. in IoT Environment?

Eugen Borcoci University POLITEHNICA Bucharest Electronics, Telecommunications and Information Technology Faculty (ETTI) Eugen.Borcoci@elcom.pub.ro

Facts:

- Internet and Telecom convergence → Integrated networks: Future Internet
- Novel services, applications and communication paradigms
 - Internet of Things (IoT) and Smart cities, M2M and Vehicular communications, Content/media oriented communications, Social networks,
 - Internet of Everything (IoE), etc.
- Novel, emergent technologies are changing networks and services architectures :
 - Supporting technologies
 - Cloud Computing
 - Fog/Edge Computing /Mobile Edge Computing /Cloudlets
 - Software Defined Networks (SDN)
 - Network Function Virtualization (NFV)
 - Advances in wireless technologies: 4G-LTE, LTE-A, WiFi, 5G

- Software Defined Networking (SDN)
 - SDN applicable in Clouds, WANs, IoT, vehicular, 5G
- SDN concepts and advantages:
 - Control Plane (CPI) and Data Plane (DPI) separation
 - centralized logical control and view of the network
 - underlying network infrastructure is abstracted to applications
 - common APIs (northbound I/F)
 - Open I/Fs Southbound I/F CPI (controllers DPI elements)
 - E.g. OpenFlow
 - Network programmability: by external applications including network management and control
 - Independency of operators w.r.t. network equipment vendors
 - Increased network reliability and security NexComm Conference, 23-27 April, Venice

SDN –architectural planes separation

Network Function Virtualization (NFV)

- Using COTS computing HW to provide Virtualized Network Functions (VNFs)
 - Sharing of HW and reducing the number of different HW arch.
- High flexibility in assigning VNFs to HW

 - better scalability (hope) decouples functionality from location enables time of day reuse

 - Virtualization → flexibility and resource sharing
- Rapid service innovation through SW -based service deployment
- Higher operational efficiencies
- Reduced power consumption
 (VNF migration, instantiation, ...)
- Standardized and open I/Fs: between VNFs infrastructure and mgmt. entities

NFV vision (source : ETSI)

SDN and NFV –complementary (orthogonal?)

- SDN horizontal separation in planes
- NFV vertical separation : HW/SW (applicable in both CPI and DPI)
- They can be developed together
 - NFV provides functionalities
 - SDN provides "Tools"
- Cooperation
 - ETSI
 - ONF
 - IETF

Source: "SDN and OpenFlow **SDN and NFV** – are complementary- example World Congress", Frankfurt, October 15-17, 2013 Os-Ma **Operation System Support / Bussines System Support** NFV (OSS/BSS) Orchestrator Virtualised Network Functions Or-Vnfm EMn Ve-Vnfm VNF OpenFlow OpenFlow . . . Manager VNFswitch Controller VNFn Or-Vi Vn-Nf Vn-Nf NEVI Vi-Vnfm Virtual Virtual Computing Storage Network Nf-Vi Virtualised Virtualisation Layer In fra structure Openflow Manager(s)vSwitch Config.point Vi-Ha Hardware Computing Storage Openflow **NFV Management** Resources pSwitch and Orchestration Other Reference Main NFV Execution points Reference points Reference points

SDN control of IoT- example 1

Source: Y.Li, et.al, "A SDN-based Architecture for Horizontal Internet of Things Services", ICC Conference, 2016

- SDN control of IoT- example 1 (cont'd)
- Functional modules of the controller and gateways

Source:Y.Li, et.al, "A SDN-based Architecture for Horizontal Internet of Things Services", ICC Conference, 2016

SDN control of IoT- example 2 (ICN-style architecture)

Source: Amr El-Mougy, et.al., "Software-Defined Wireless Network Architectures for the Internetof-Things", LCN 2015, Florida, USA NexComm Conference, 23-27 April, Venice

MEC Use Cases example- IoT

- Internet of Things (IoT)
 - IoT devices: Often limited (processor, memory capacity)→ need for messages aggregation, security, low latency..

 - Possible Solutions:
 - IoT manipulated close to the devices (e.g., MEC server)
 - This also provides an analytics processing capability and a low latency response time.

Source: Yun Chao Hu et.al., "Mobile Edge Computing A key technology towards 5G" ETSI White Paper No. 11 September 2015, ISBN No. 979-10-92620-08-5

- Conclusions
- Significant effort exist towards convergence/cooperation
 - **Technologies**
 - SDN- NFV
 - SDN-NFV-4G-5G
 - CC- EC/Fog- 5G
 - EC/Fog-MEC- Cloudlets CC-SDN-NFV- IoV

 - CC-SDN-NEV- IoT
 - Issues: eliminate parallelism and overlapping between standardization efforts.....
 - Different functional and business aspects
 - Management and control
 - Slicing and virtualization
 - Security, privacy
 - Scalability

.

- Interoperability
- Seamless deployment characteristics
- Support for apps and services
- New business models
 - NexComm Conference, 23-27 April, Venice

Thank you !

References

- ETSI- Network Functions Virtualization Introductory White Paper, https://portal.etsi.org/nfv/nfv_white_paper.pdf
- 2. ETSI GS NFV 002 v1.2.1 2014-12, NFV Architectural Framework
- ONF, "OpenFlow-Enabled SDN and Network FunctionsVirtualization," https://www.opennetworking.org/images/stories/downloads/sdnresources/solutionbriefs/sb-sdn-nvf-solution.pdf;
- 4. https://www.sdxcentral.com/sdn-nfv-use-cases/
- 5. M.Mendonca, et. al., A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks, 2014, http://hal.inria.fr/hal-00825087
- Y.Li, et.al, "A SDN-based Architecture for Horizontal Internet of Things Services", ICC Conference, 2016
- Amr El-Mougy, et.al., "Software-Defined Wireless Network Architectures for the Internet-of-Things", LCN 2015, Florida, USA
- Yun Chao Hu et.al., "Mobile Edge Computing A key technology towards 5G" ETSI White Paper No. 11, September 2015, ISBN No. 979-10-92620-08-5

Backup slides

List of Acronyms

- **Base Station** BS
- BSS **Business Support System**

ION, MEC, ...

- CC **Cloud Computing**
- CCN **Content Centric Networking**
- COTS Commercial-off-the-Shelf
- EC Edge Computing
- EPC **Evolved Packet Core**
- ETSI European Telecommunications Standards Institute
- FC Fog Computing
- FCN Fog Computing Node
- IoT Internet of Things
- LTE Long Term Evolution
- MEC Mobile Edge Computing
- M&O Management and Orchestration
- **Mobility Management Entity** MME
- NF **Network Function**
- NFV **Network Functions Virtualization**
- NFVI Network Functions Virtualization Infrastructure
- NO **Network Operator**
- NP Network Provider
- **Network Service** NS
- OSS **Operations Support System**
- SDN Software Defined Network
- SLA Service Level Agreement
- SP Service Provider

Intro to Panel on "Feeling the Pain of Convergence: mmWave, 5G, SDN, NFV, IoT, ION, MEC, ..."

Tommy Svensson

Professor, PhD, Leader Wireless Systems Department of Signals and Systems, Communication Systems Group Chalmers University of Technology, Sweden tommy.svensson@chalmers.se www.chalmers.se/en/staff/Pages/tommy-svensson.aspx

CHALMERS

Event: COCORA, 2017, Venice, Italy Date: April 27, 2017

Tommy Svensson www.chalmers.se/s2

METIS Scenarios and Test Cases

Source: METIS Deliverable D1.1 "Scenarios, requirements and KPIs for 5G mobile and wireless system", <u>https://www.metis2020.com/</u>

Additional use cases has been proposed by NGMN Alliance, 'NGMN White Paper,' Feb. 2015 (available online https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf)

METIS Overall Technical Goal

A system concept that, relative to today, supports:

- > 1000 times higher mobile data volume per area,
- > 10 times to 100 times higher number of connected devices,
- > 10 times to 100 times higher typical user data rate,
- > 10 times longer battery life for low power Massive Machine Communication (MMC) devices,
- > 5 times reduced End-to-End (E2E) latency.

Source: METIS Deliverable D1.1 "Scenarios, requirements and KPIs for 5G mobile and wireless system", https://www.metis2020.com/

Recap: ITU-R Vision for Systems Beyond 3G

Integrate existing and evolving access systems on a *packet-based* platform to enable cooperation and interworking. "Optimally connected anywhere, anytime"

Event: COCORA, 2017, Venice, Italy Date: April 27, 2017

Tommy Svensson www.chalmers.se/s2

We have done it once already – On the terminal side!

Flexibility versus Efficiency

Picture source: http://onpr.com/choosing-the-right-smartphone-its-easy-to-decide/

Event: COCORA, 2017, Venice, Italy Date: April 27, 2017

Tommy Svensson www.chalmers.se/s2

From hexagonal cells to unstructured beam spaces

mm MAGIC

Network slicing - Where should we do the computing?

CHALMERS

Department of Signals and Systems Communication Systems Group

Challenges and Opportunities with Demanding Verticals "Integrated Moving Networks"

- Mutual benefits!
 - Better mobile systems efficiency: Vehicles collect side information to improve the resource allocation and performance of the mobile network
 - More reliable V2X links: Connect nonvehicular users to the Traffic Safety/Traffic Efficiency protocols (Pedestrians, cyclists, pets, ...)
- New disruptive business opportunities: exploiting vehicle sensed data

Tommy Svensson www.chalmers.se/s2 The research leading to these results partly received funding from the European Commission H2020 programme under grant agreement no671650 (5G-PPP mmMAGIC project).

THANK YOU!

Find out more at https://5g-mmmagic.eu

Public deliverables: <u>https://5g-mmmagic.eu/results/#deliverables</u>

D1.1: "Use cases characterization, KPIs and preferred suitable frequency ranges for future 5G systems between 6 GHz and 100 GHz", released 2015-11-30

D5.1 "Initial multi-node and antenna transmitter and receiver architectures and schemes" released 2016-03-31

- D4.1 "Preliminary radio interface concepts for mm-wave mobile communications", released 2016-06-30
- D3.1 "Initial concepts on 5G architecture and integration", released 2016-03-31
- D2.1 "Measurement campaigns and initial channel models for preferred suitable frequency ranges", released 2016-03-31

6th Globecom'2017 Workshop on International Workshop on Emerging Technologies for 5G and Beyond Wireless and Mobile Networks (ET5GB)

Mon or Fri Dec 4 or 8, 2017, Singapore

Main topics:

- Novel radio access network (RAN) architectures
- Advanced radio resource management (RRM) techniques
- Emerging technologies in physical layer
- Novel services
- mmWave communications
- Energy efficiency
- Spectrum
- Prototype and test-bed for 5G and beyond technologies

Workshop Chairs:

- Wei Yu, University of Toronto, Canada
- Tommy Svensson, Chalmers U. of Technology, Sweden
- Lingjia Liu, University of Kansas, USA

Technical Program Chairs:

- Halim Yanikomeroglu, Carleton University, Canada
- Charlie (Jianzhong) Zhang, Samsung Electronics, USA
- Peiying Zhu, Huawei Technologies, Canada

http://wcsp.eng.usf.edu/5g/2017 (to appear) http://wcsp.eng.usf.edu/5g/2016

http://www.ieee-globecom.org/

From concept to deployment: the visions of the 5GCHAMPION and 5G-MiEdge projects (Olympic Games are coming ...)

Valerio Frascolla Intel

2017.04.27, COCORA 2017, Venice

Intel Confidential — Do Not Forward

5GCHAMPION (www.5g-champion.eu)

- Project name: <u>5G Communication with a Heterogeneous</u>, <u>Agile Mobile network in the Pyeongchang Winter</u> <u>Olympic Competition</u>
- Funding scheme: FP8, Europe-Korea co-funding
- Duration: 2016.06 2018.05
- Key Targets:
 - The first 5G proof-of-concept in conjunction with the 2018 Korean Winter Olympics,
 - Synergize satellite and terrestrial technologies,
 - Strong impact on Standards bodies.

Еигоре

Rep. of Korea

1. CEA-Leti (Coordinator), France	1. ETRI (Coordinator)
2. Nokia, Finland	2. Seoul Metropolitant Rapid Transit
3. Intel, Germany	3. South Korea Telecom
4. Thales Alenia Space, France	4. HFR
5. University of Oulu, Finland	5. Clever Logic
6. Fraunhofer HHI, Germany	6. Seoul National University
7. Telespazio, France	7. Dankook University
8. iMinds, Belgium	8. Hanyang University
	9. Korea Telecom
	10. Eluon
	11. InSoft
	12. Mobigen

13. Gwangju Institute of Science and Technology

- Main technology enablers: \geq
 - \geq mmWave Backhauling,
 - mmWave transceivers with \triangleright reconfigurable antennas,
 - Localised evolved packet core supported by distributed or centralized mobile edge clouds with caching,
 - Media streaming functionalities,
 - Satellite radio access, \triangleright
 - Satellite-terrestrial positioning. \geq

íntel

5G-MiEdge (5g-miedge.eu)

- Name: <u>Millimeter-wave Edge</u> Cloud as an Enabler for <u>5G</u> Ecosystem
- Funding scheme: FP8, Europe-Japan co-funding, 2016.06 – 2019.05
- > Key Target:
 - 5G proof-of-concept in conjunction with the 2020 Japanese Summer Olympics.
- Key technology enablers:
 - mmWave Access & Backhaul,
 - User/Application Centric Orchestration,
 - Liquid RAN Control-plane:
 - novel ultra-lean and inter-operable control signaling over 3GPP LTE to provide liquid ubiquitous coverage in 5G networks, based on acquisition of context information and forecasting of traffic requirements.

ínte!

5G-MiEdge

- Main research directions: \geq
 - Focus on the ultra High-Speed and Low Latency Communications (uHSLLC) use cases and related technology enablers \succ
 - Synergize between mmWave and MEC technologies

Technology enablers for uHSLLC and related KPIs

Intel Confidential – Do Not forward

≻Questions?

Disclaimers

5G-MiEdge: The research leading to these results are jointly funded by the European Commission (EC) H2020 and the Ministry of Internal affairs and Communications (MIC) in Japan under grant agreements N° 723171 5G MiEdge in EC and 0159-{0149, 0150, 0151} in MIC.

5GCHAMPION: The research leading to these results was supported by the Institute for Information & communications Technology Promotion (IITP) grant, funded by the Korea government (MSIP) (No.B0115-16-0001, 5GCHAMPION), and received funding from European Union H2020 5GPPP under grant n. 723247.

ínte

Intel Communication and Devices Group

Intel Confidential — Do Not Forward