Underwater Optical Wireless Communications

Dr Mark Leeson School of Engineering University of Warwick

Acknowledgements:

Contents

Introduction

Current Underwater Technology: Acoustic & RF

Technology Comparisons

The Underwater Channel

Channel Modelling

Scattering & its Modelling

Impact of Link Orientation

Maximum Link Distance

Practical Link Distance Prediction

A Fuller Treatment

Field of View (FOV) Simulation

Conclusions

Future Directions

Where is the University of Warwick?

Connected Systems Research Group

Within Connected Systems, the Communication Systems Lab (https://www2.warwick.ac.uk/fac/sci/eng/research/grouplist/connectedsystems) is home to research in Photonic Systems, Optical Technology, Wireless Communications, Machine Learning and Nanoscale Communications. The fundamental advances in the laboratory will produce impact in areas such as next generation mobile data networks, vehicular communications and future healthcare monitoring systems.

Current Underwater Technology

Applications:

- Ocean biology
- Environmental research
- Surveillance
- Seismic monitoring
- Ship hull monitoring
- Communicating with submarines
- Diver communications

Kulhandjian et al., Proc. IEEE Underwater Comm. Conf. and Workshop, pp. 12-14, Los Angeles, 2012

Acoustics: Current Technology

Typical modem (Evo Logics)

6

Typical application, adapted from Heidemann et al., IEEE WCNC Conference, pp. 228-235,2006.

Path Loss – absorption

signal loss from conversion of acoustic energy to heat, denoted by a(f)

Thorp's empirical approximation:

Path Loss -Spreading Loss

Use path loss exponent k to produce a combination of absorption and the spreading loss over a distance l in km:

$$A\{l,f\} = l^k \{a(f)\}^l$$

The value of k depends on the propagation environment:

Shallow water, k = 1 (cylindrical spreading)

Deep water, k = 2 (spherical spreading)

Practical compromise k = 1.5

Noise

From turbulence, shipping, wind and heat

Attenuation Noise (AN) Factor

Consider a narrow band of frequencies Δf about some centre frequency f_c

 $SNR = S(f) / [A\{l, f\}N(f)\Delta f]$

The quantity $A\{l, f\}N(f)$ is known as the attenuation noise (AN)

factor

RF is also established

Typical application from Edwards, New buoys enable submerged subs to communicate https://phys.org/news/2010-07-buoys-enable-submerged-subs.html

WARWICK

RF Attenuation in Sea Water

(Lanzagorta, Underwater Communications, Morgan & Claypool, 2013)

RF Implementations vs. Acoustic

Technology	Frequency	Modulation	Distance	Data Rate
RF	100 kHz	BPSK	6 m	1 kbps
RF	10 kHz	BPSK	16 m	1 kbps
RF	1 kHz	BPSK	2 m	1 kbps
Acoustic	800 kHz	BPSK	1 m	80 kbps
Acoustic	24 kHz	QPSK	2500 m	30 kbps
Acoustic	70 kHz	ASK	70 m	200 bps
RF	2.4 GHz	QPSK	0.17 m	2 Mbps
RF	2.4 GHz	ССК	0.16 m	11 Mbps

(Adapted from Lloret et al., Sensors, 2012)

Future Technology

Goals

- Higher bandwidth
- Communication through the air/water interface
- Secure/covert

Optical wireless is a possible solution:

transmission of a modulated light beam through an open environment to obtain broadband communication

UOWC Performance Results

Types of lasers operating in blue-green spectrum

Comparison of Technologies

Parameter	Acoustic	RF	Optical
Attenuation	Distance and frequency dependent (0.1 - 4 dB/km)	Frequency and conductivity dependent (3.5 - 5 dB/m)	0.39 dB/m (ocean) 11 dB/m (turbid)
Speed	1500 ms^{-1}	$2.3 \times 10^8 \text{ ms}^{-1}$	$2.3 \times 10^8 \text{ ms}^{-1}$
Data Rate	\approx kbps	\approx Mbps	≈ Gbps
Latency	High	Moderate	Low
Distance	\approx km	≤ 10 m	$\approx 10 - 100 \text{ m}$
Bandwidth	1 kHz – 100 kHz	$\approx MHz$	$\leq 150 \text{ MHz}$
Frequency Band	10 – 15 kHz	30 – 300 Hz	$\approx 5 \times 10^{14} \mathrm{Hz}$
Transmission Power	> 10 W	mW – W	mW – W

(Adapted from Kaushal & Kaddoum, IEEE Access, 2016)

Underwater Technology Comparison

- Acoustic: long range (km); low bandwidth (kHz); low efficiency (~100 bits J⁻¹ – 10000 μJ bit⁻¹)*
- Radio frequency: short range (<10m); low bandwidth (kHz); energy efficient (~6kbits J⁻¹ – 166 μJ bit⁻¹)⁺
- Optical wireless: short-mid range (up to 100s of m); high bandwidth (GHz); very energy efficient (30k bits
 J⁻¹ – 33 µJ bit⁻¹)*

* e.g. Farr et al., OCEANS 2010 IEEE, Sydney, 24-27 May 2010; ⁺e.g. O'Rourke et al., WUWNet, Los Angeles, California, 2012.

Underwater Scenarios

Atlantic Ocean

- Laser likely
- Longer range
- Tracking

Thames, UK

- LED likely
- Shorter range
- Multipath

The Underwater Channel

Photosynthetic life

Light too faint to support photosynthesis

No light passes

Jerlov Water Types

Water types divided into two categories:

- oceanic (blue water) with 3 subdivisions
- Type I: extremely pure ocean water
- Type II: tropical-subtropical water
- Type III: mid-latitude water

coastal (littoral zone) subdivided into nine types Type 1 – least turbid

Type 9 – most turbid

. . .

Transmittance of Water Types

Channel Variation

Image: Google Earth (accessed 03/03/13)

Absorption Variation

Transmission Window

Electromagnetic attenuation in water

Adapted from http://www1.lsbu.ac.uk/water/water_vibrational_spectrum.html

Light Sources: Lasers

Туре	Wavelength	Advantages	Disadvantages
Argon-ion	455-529 nm	High output	 Low efficiency; needs high input power; needs cooling
Nd:YAG	532 nm (green) 473 nm (blue)	Very high output power; long life time; compact	Variable efficiency; costly; can be hard to modulate
Ti: Sapphire	455 nm	Ultra fast output; tunable	Costly; sensitive to vibrations
Metal vapour	441.6 nm, 570 nm and 578 nm	High power; long life time	Requires cooling
Dye	450 nm - 530 nm	Very high power ; tunable; high data rate	Costly; requires cooling arrangements
Semiconductor	405 nm & 450 - 470 nm (InGaN) 375 nm to 473 nm (GaN)	Highly efficient; compact	Costly; easily damaged due to over current

(Adapted from Kaushal & Kaddoum, IEEE Access, 2016)

Light Sources: LEDs

Manufacturer	Wavelength (nm)	Luminous Flux (Im)
Lamina Atlas NT-42C1-0484	460 - 470	63
AOP LED Corp PU-5WAS	455 - 475	54
Kingbright AAD1- 9090QB11ZC/3	460	35.7
Ligitek LGLB-313E	460 - 475	30.6
Toshiba TL12B01(T30)	460	6
Lumex SML-LX1610USBC	470	5

(Adapted from Kaushal & Kaddoum, IEEE Access, 2016)

Channel Modelling

Beer's Law: At a depth *z* and a wavelength λ , the optical path loss as a function of distance *L* may be approximated by: $e^{-c(\lambda,z)L}$

The attenuation coefficient is made up of:

$$c(\lambda, z) = a(\lambda, z) + b(\lambda)$$

Attenuation = absorption + scattering

Typical Ballpark Values			
Water type	$a(m^{-1})$	$b(m^{-1})$	
Clean water	0.114	0.037	
Turbid water	0.226	1.824	

Optically Significant Components of Aquatic Media

Channel Variation

Channel Variation

Attenuation from Components

*colour dissolved organic material -dead & decaying organic matter

Process causing changes in the direction of electromagnetic energy in an optical beam due to localised nonuniformities

- from different particles within the medium
- medium state variations resulting in varying refractive index

Scattering

Pure seawater and particulate scattering spectra, where small particles are defined as having a diameter < 1 μ m. (data from Haltrin, 1999)

Modelling Scattering

Define volume scattering function (VSF), $\beta(\theta, \lambda)$ to describe angular distribution of scattered light to the incident irradiance per unit In volume.

Inherent optical property geometry (Mobley, 1994)

For unpolarised incident light and isotropic water, the scattering becomes angular dependent and VSF for an angle θ into a solid angle $\Delta\Omega$ is:

$$\beta(\theta,\lambda) = \lim_{\Delta r \to 0} \lim_{\Delta \Omega \to 0} \frac{\Delta B(\theta,\lambda)}{\Delta r \Delta \Omega}$$

Modelling Scattering

Alternatively, use the angle between the direction vector of the incoming light **n** and the direction vector of the scattered light \mathbf{n}' and relate it to scattering phase function $\tilde{\beta}(\mathbf{r}, \theta)$ (that describes the angular distribution of the scattered photons) by $\beta(\mathbf{r}, \mathbf{n}, \mathbf{n}') = b\tilde{\beta}(\mathbf{r}, \theta)$, where θ is defined as the scattering angle between \mathbf{n} and \mathbf{n}' , i.e. $\mathbf{n}, \mathbf{n}' = \cos \theta$.

Form of $\tilde{\beta}(\mathbf{r}, \theta)$ is a subject of ongoing work, the historical versions such as Henyey-Greenstein (HG) are old and not up to the job.

3D Simulation Model

Cross-section through output

3D Model: Scattering Effect

Impact of Link Orientation

non-refracted path

refracted path

attenuation coefficient

refractive index

Link Orientation: Why it Matters

Т

Link Orientation: Causes of Variation

dissolved and particulate substances temperature salinity pressure

41

attenuation coefficient refractive index

Simulation of 200m links from a fixed starting position with average attenuation for each angle recorded

Attenuation with depth is found using bio-optical models of phytoplankton with depth and relations between constituent concentrations

Johnson, Green and Leeson, App. Opt. 52(33), 2013

Johnson, Green and Leeson, App. Opt. 52(33), 2013

Absorption with Depth

Maximum Link Distance

Significant implications for link distance. For example, the distances become...

Practical Attenuation Variation

"The murky depths!"

Measured data are shown by the circles with a MATLAB fit (solid line)

Practical Link Distance Prediction

Optimal Transmission Wavelengths

Increasing surface turbidity

Changes grouped by scale refractive index 1.334 1.339 1.344 Small scale, scattering 0 Medium scale, turbulence 500 depth in metres Large scale, global gradients 1000 1500 2000 Causes 2500 temperature, Salinity, pressure, \bullet 3000 density

Refractive index gradients found using data available for research using an algorithm which calculates refractive indices, based on the values of temperature, wavelength, salinity and pressure

Ray tracing used to plot 200m link paths, which had different starting angles and depths, and measure size of the deviation created by refraction

Significance of the findings significant depends on beam angle, transmitter FOV, the magnitude of deviation (m) and the amount of scattering in the link

A Fuller Treatment

We have to employ the Radiative Transfer Equation (RTE)

$$\left[\frac{1}{\nu}\frac{\partial}{\partial t} + \mathbf{n} \cdot \nabla_{\mathbf{r}}\right] I(t, \mathbf{r}, \mathbf{n}) = \int_{4\pi} \beta(\mathbf{r}, \mathbf{n}, \mathbf{n}') I(t, \mathbf{r}, \mathbf{n}') d\mathbf{n}' - cI(t, \mathbf{r}, \mathbf{n}) + E(t, \mathbf{r}, \mathbf{n})$$

No analytical solutions for useful scenarios

Approximate analytical solutions possible for transmitter field of view (FOV) less than 10° but loses the temporal information as scattered and non-scattered photons are considered to travel the same distance in the same time.

Numerical solutions – Monte Carlo

FOV Simulation: Diffuse LOS Link

Jasman, Green and Leeson, Microwave and Optical Technology Letters, 59(4) 837-840, 2017.

FOV Simulation: Power Distribution

FOV Simulation: Frequency Response

FOV Simulation: Frequency Response

On the same scale – much reduced in turbid water

Practical Work

Transmission of data using IRDA protocol 8 Mbps

Some Practical Results

Multiple hop arrangement

Diversity

UOWC Multiple Input Multiple Output (MIMO) transmission through turbulence

Diversity: Outage Performance

Gamma-Gamma turbulence

Hybrid System

Han et al., China Communications, 11(5), 49-59, 2014

Hybrid Systems

Work needed on implementing protocols and functions in FPGAs or similar

Latest Comparison

Muth, Laser Focus World, 53(5), 2017

Conclusions

- The incumbent technologies have major limitations
- Optical wireless shows promise underwater
- Visible light is essential
- Understanding of water properties needed
- Link orientation is important
- High bit rates are possible in
 - clearer water or
 - over short distances

There are many subtleties in absorption and refraction

Future Directions

Improved channel modelling

Coding and error correction

Modulation methods

Improved practical arrangement

Receiver enhancements

- Optical preamplifiers
- More on Coherent transmission

Questions

Thank you for your attention.

