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1  Introduction 
l  Speaker: 

§  Senior researcher at INRIA, France 
§  Head of the Dionysos team  
§  Area: dependability and performance of (complex) systems 

l  The topic of this presentation: 
§  Dependability analysis of critical systems 
§  Technically, how to deal with rare events (events having 

very small probabilities) from the quantitative point of view? 
l  Critical systems: those where catastrophic failures can 

lead to human losses. 
l  Definition extended to include the cases of events 

leading to huge financial losses or to huge 
environmental harms. 
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1  Introduction 
l  When there are possible losses in human lives, the 

system is seen as non-repairable 
§  this refers to its critical aspects, or its critical services, 

defined as previously stated 
§  typical examples: transportation (aircrafts, …), nuclear 

production plants, some medical systems, … 
l  If criticality comes from the risk of huge financial 

losses, for example, or from the environment, systems 
can be non-repairable as before, or repairable 
§  for a repairable system, think of some communication 

networks and information systems, … 
l  This classification refers to the relevant metrics to 

analyze critical systems; see below. 
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Critical systems 

l  More requirements in modern industry lead to new needs, 
in particular for understanding complex systems’ behavior. 

l  One of the main points of view in this understanding 
process refers to the dependability properties, in particular 
for critical systems. 

l  Very recently we have realized that criticality also appears 
because of the emerging interconnection of very different 
huge networks (a topic in itself). 

l  The usual case is that in a critical system, the “bad” 
situation, the catastrophic failure, is rare (some exceptions 
exist, e.g. the case of the American Space Shuttle). 

l  It must be also added that in industry many assessments 
are expert-based, instead of model-based (a topic in 
itself). Here, we will be concerned only with the latter. 

  



G. Rubino, INRIA Slide Number: 6 Dependability and rare events April 23, 2017 

C
TR

Q
  2

01
7 

Main stochastic tool: Markov 

l  Markov models are powerful: a solid theory, a large 
body of evaluation methods (analytical, numerical, 
plus simulation); some extensions are possible 

l  Price for accuracy: large (huge) state spaces 
l  Critical system --> rare events --> stiffness --> serious 

numerical problems (if numerical analysis is possible) 
 
However, for this rare event situation 
1.  Efficient Monte Carlo techniques exist; they allow 

the evaluation of very complex models 
2.  Efficient numerical techniques also exist for 

computing bounds of metrics of interest 
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2  Dependability analysis 
l  Quantitative analysis of the behavior of (complex) 

systems with respect to failures and repairs of their 
components 

l  A reference for standard associated concepts: 
§  “Basic Concepts and Taxonomy of Dependable and Secure 

Computing”, by A. Avizienis, J.-C. Laprie, B. Randell 
and C. Landwehr, IEEE TRAN. on DEPENDABLE AND SECURE 
COMPUTING, VOL. 1, NO. 1, JAN-MAR 2004 
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Basic metrics: systems with no repairs 

l  Assumption: at time t, systems and their components  
are 
§  either up, = working (perfectly) 
§  or down, = failed (completely) 
(extensions exist for the case of more system’s states) 

l  MTTF: Mean Time To Failure 
§  mean time from beginning of operation until first failure 

l  R(t): reliability at time t = Pr( system is up from 0 to t ) 
l  Let T be r.v. “time until first failure” = “life-time” 

§  MTTF = E(T) 
§  R(t) = Pr( T > t ) 
§  We have  MTTF = R(t)dt

0

∞

∫
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Basic metrics: systems with repairs 

All presented before, plus 
l  Point availability at t: 

§  A(t) = Pr( system is up at time t ) 

l  Asymptotic availability: A(∞) 
l  Interval availability on [0, t ]: 

§  the r.v. IA(t) = “fraction of [0,t] during which system is up” 
§  minimal info. about this random variable: 

the expected interval availability on [0, t ]: E(IA(t)) 
§  we have: 

l  MTTR: Mean Time To Repair 
l  MTBF: Mean Time Between Failures = MTTF + MTTR  

!!

E(IA(t)) = 1
t

A(u)du
0

t

∫
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Rare events 

l  When the system is not repairable, 
§  we typically deal with constraints such as 

  MTTF > a >> 1, 
or 
  R(t) > 1 – ε, 

where t is the mission time. 
§  in practice, we can find values of ε such as 10-8, 10-9, … 

l  If the system is repairable, 
§  we often focus on the asymptotic unavailability U = 1 –  A(∞) 
§  we can find cases where U ≈ 10-9 but also systems with 

higher tolerable unavailability values (10-5, 10-6, …) 

!
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On the exact metric evaluation 

l  Most used tools: Markov models 
l  Continuous time, homogeneous, in general (but not 

always) finite state spaces 
l  Remarks: 

§  Computing MTTF: a linear problem 
§  Computing R(t), A(t): a linear differential problem 
§  Computing A(∞): a linear problem as well 
§  Analyzing IA(t): a much more complex differential 

problem 
§  … 

l  Many algorithms available, a solid theory and also 
many techniques to apply Markov tools to more 
general models 
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Elementary example: basic metrics 

l  One component, failure rate λ, repair rate µ: 

 
l  MTTF = 1/λ, MTTR = 1/µ 
l  R(t) = exp(-λt) 
l  A(t): we must solve the balance linear differential 

system, to obtain 

l  For A(∞), we must solve the equilibrium linear balance 
equations, or, here, take the limit above, to get A(∞) = 
µ/(λ+µ). For the unavailability, U = λ/(λ+µ) 

1 0
⁄

µ

A(t) = µ
λ +µ

+
λ

λ +µ
e−(λ +µ)t



G. Rubino, INRIA Slide Number: 13 Dependability and rare events April 23, 2017 

C
TR

Q
  2

01
7 

Elementary example: IA(t) 

l  If we look now at E(IA(t)), we also have a linear 
differential problem; we obtain 

 
 
l  The distribution of IA(t) is also extremely useful. In 

many systems, we want (or we should want) to have 
Pr( IA(t) > 1 – δ ) > 1 – ε (“system is available most of 
the mission time with high probability”). 

l  But if we need the distribution of IA(t), then things are 
much more complex: first, observe that 
 
 
meaning that there is a mass at 1 (a defective r.v.). 

E(IA(t)) = µ
λ +µ

+
λ

(λ +µ)2 t
e−(λ +µ)t

Pr(IA(t) =1) = e−λt
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l  for x < 1, distribution of IA(t), first form: 
 
 
 
 
 

l  for x < 1, distribution of IA(t), second form: 

Pr(IA(t) ≤ x) =1− e−λxt 1+ λµxt e−µy

y
I1 2 λµxty( )dy

0

(1−x )t

∫
$

%

&
&

'

(

)
)

I1 z( ) = z
2
⎛

⎝
⎜
⎞

⎠
⎟

2 j+1 1
j!(1+ j)!j≥0

∑ (Bessel function, first kind)

Pr(IA(t) ≤ x) = e−µ(1− x)t
µ(1− x)t( )n

n!n≥0
∑ e−λxt

λxt( )k

k!k≥n+1
∑
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l  IA(t) distribution, third form: for x < 1, 
 

l  This is the right form for numerical evaluation, 
accuracy and even probabilistic insight. We say that it 
is “Uniformization-based” 

Pr(IA(t) ≤ x) = e−νt
νt( )n

n!n≥1
∑ Cn,k−1p

n−k+1qk−1
k=1

n

∑ Cn,i x
i (1− x)n−1

i=k

n

∑

Cm, j =
m!

j!(m− j)!
, ν = λ +µ, p =1− q = λ

ν
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Extensions to the Markov setting 

l  Life-times and/or repair-times with non-exponential 
distributions (Coxian, series-parallel, Phase-type…) 

l  Semi-Markov models 
l  Non-homogeneous models 
l  Hybrid models with both discrete and continuous state 

components 
l  Inclusion of deterministic times in the stochastic 

models 

l  In these, part of the good sides of Markov models are 
conserved 

l  In the talk, we will stay Markovian 
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A typical example 

l  Case study from literature: a multi-processor fault-
tolerant computer system, where 
§  processors were organized in clusters 
§  data was stored in disk arrays, where redundancy made that 

any array supported the failure of any (but only one) of its 
disks (that is, without loosing data) 

§  disk controllers were organized in pairs, each pair controlling 
several disk arrays 

§  each cluster of processors was connected to all the pairs of 
disk controllers 

§  system worked (all data could be accessed) with 
o  at least one processor per cluster, 
o  at least one controller per pair, 
o  at most one failed disk in each array 
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A realistic example: graphical scheme 

processors 

disk controllers 

disks 

disk 
cluster 

disk 
cluster 

disk 
cluster 

disk 
cluster 

processor 
cluster 

processor 
cluster 
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A realistic example: some details 
l  There was one repairman, with FIFO scheduling  
l  Assume exponentially distributed components’ life-times and 

repair times 
l  Typical parameters’ values: 

§  2 clusters, 4 pairs of controllers, 8 disk arrays, each with 4 disks 
§  processor failure rate = controller failure rate = 1/2000 f/day (≈ 1 fail. 

every 5.5 y, on ave.) 
§  disk failure rate: disks come in pairs with failure rates 1/4000, 1/5000, 

1/8000 and 1/1000 f/day (highest ≈ 1 fail. every 2.7 y, on ave., lowest ≈ 1 
fail. every 22 y, on ave. ) 

l  When a processor failed, with probability 0.1 another processor 
in the other cluster was contaminated and failed as well; there 
was also a set of failure modes, and the repair rate depended 
on the mode (not detailed here) 

l  The resulting model was a continuous time irreducible and 
homogeneous Markov chain; number of states was > 7.4×1014 
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A realistic example: analysis? 

l  Assume we want to evaluate the MTTF and the 
asymptotic availability A(∞) of such a model. 

l  There is no analytical expression of these metrics (no 
formula) and model’s size precludes the use of 
numerical methods, even if problems are just linear 
systems to solve. 

l  Simulation? Yes, no problem with size, but then, rarity 
strikes: 
§  the MTTF is too high; we have to wait too much to observe 

failures; 
§  the asymptotic availability is too close to 1, with the same 

consequences, we have to wait too much to be able to see 
failures and repairs.  
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The rest of the presentation 

l  We will introduce some of the available tools to deal 
with these problems, mainly through examples. 

l  One of the points we want to make is that many of 
these techniques are, as far as we have seen, 
unknown to most software used in the area, and also 
to many analysts. 

l  The corresponding research areas are very active 
today. 
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Crude Monte Carlo for MTTF 

l  Group all down states into a single state d. 
l  Call 0 the initial state (where everything is perfectly 

working): X(0) = 0. 
l  Denote 

l  It can then be proved that 

τ 0 = inf t > 0 : X(t) = 0,X(t
− ) ≠ 0{ }

τ d = inf t > 0 : X(t) = d{ }

MTTF =
E inf τ 0,τ d{ }( )
Pr τ d < τ 0( )

easy to estimate 

hard to estimate 
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l  Denote 

l  The problem reduces to find an efficient way of 
estimating the probability    (in a critical system, a very 
small number). 

l  The interest is that now we only need to work in 
discrete time. 

l  Computing    is a linear problem; same size as for 
computing MTTF. 

l  Let us look at an example: 

γ = Pr τ d < τ 0( )

γ

γ
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An example 

l  Suppose there are 2 types of components: a, b, and 
that initially, we have 2 units of each type. 

l  System works if there is at least one component 
working per class. There is a single repairman working 
in FIFO order. 

l  States: 
§  initial state: (2, 2) 
§  other states: (na, nb; state of the repair queue), where na 

(resp. nb) is the number of type a (resp. type b) working 
units (na, nb in {2, 1, 0}). 

§  examples: 
o  (1, 2; a): class a unit at repair 
o  (1, 1; a, b): class b unit at repair, class a unit failed and waiting 
o  (1, 1; b, a): class a unit at repair, class b unit failed and waiting 
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Model 

2,2 

1,2;a 

2,1;b 

1,1;a,b 

1,1;b,a 

d 

µa 

2λb 

2λa 

µb 

λa 

λb 

µa 

µb 

2λa 

2λb 

λa+λb 
 

2,2 

1,2;a 

2,1;b 

1,1;a,b 

1,1;b,a 

d 

sa 

pb 

pa 

sb 

qa 

rb 

ur 

vr 

ra 

vf 

qb 

uf 

X: continuos time Markov chain; 
initial state: (2,2) 

Y: discrete time 
Markov chain; 
same initial state 

canonical embedding 
λa+λb 
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pa =
λa

λa +λb
, pb =

λb
λa +λb

qa =
λa

λa + 2λb +µa

, qb =
2λb

λa + 2λb +µa

, sa =
µa

λa + 2λb +µa

ra =
2λa

2λa +λb +µb

, rb =
λb

2λa +λb +µb

, ta =
µb

2λa +λb +µb

vf =
λa +λb

λa +λb +µb

, vr =
µb

λa +λb +µb

uf =
λa +λb

λa +λb +µa

, ur =
µa

λa +λb +µa
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Exact computation of   γ

γ2,2 = paγ1,2;a + pbγ2,1;b
γ1,2;a = qa + qbγ1,1;b,a

...

2,2 

1,2;a 

2,1;b 

1,1;a,b 

1,1;b,a 

d 

sa 

pb 

pa 

sb 

qa 

rb 

ur 

vr 

ra 

vf 

uf 

qb 

γ x = Pr(τ d < τ 0 | X(0) = x),
Using 

qb 



G. Rubino, INRIA Slide Number: 28 Dependability and rare events April 23, 2017 

C
TR

Q
  2

01
7 

Crude or Standard Monte Carlo 

l  Crude Monte Carlo for estimating γ: 
§  set counter C to 0 
§  perform N times (N large): 

o  build a path of X from state 0, stopping when the path reaches either 
state d or state 0 back 

o  increase C by 1 if the path ends in d 

§  estimate γ by γ* = C / N 
§  a confidence interval for γ* with confidence level, say, 95%: 

  (γ* – 1.96 Δ, γ* + 1.96 Δ ) 
where  Δ = (γ*(1 - γ*)/N )½ 

§  the ratio Δ /γ* = ( (1 - γ*)/(Nγ*) )½ is seen as the relative error 
associated with the estimator, RE(γ*) 

§  when γ* is very small, we need N huge in order to keep 
RE(γ*) reasonable (small enough); often impossible to do 
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3  Importance sampling (IS) ideas 
l  Instead of simulating model Y, simulate a different 

model Z having the same topology than Y but 
different dynamics 

l  Visiting state d before coming back to 0 is rare in Y. 
The transition probabilities associated with failures are 
usually very small. If Z is “built correctly”, the event 
becomes frequent in Z. 

l  This “change of dynamics” can be done by replacing 
the failure rates (in X) by new values of the order of 
magnitude of the repair rates. 

l  Instead of estimating γ, a different quantity γ’ is 
estimated in Z, such that estimating it allows to derive 
an estimation of the real target γ. 
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Simplest IS scheme: FB 

l  FB: Failure Biasing 
§  replace each transition probability (in Y) corresponding to a 

failure (except if they start at state 0) by a constant θ and 
then scale all those starting from a given state 

§  take 0.5 < θ < 0.8 (say) 
§  for instance, 

from (1,2;a) to d: 
change qa to θ/2, 
change qb to θ/2 

2,2 

1,2;a 

2,1;b 

1,1;a,b 

1,1;b,a 

d 

sa 

pb 

pa 

sb 

qa 

rb 

ur 

vr 

ra 

vf 

uf 

qb 
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Simplest IS scheme: FB 

l  FB: Failure Biasing: 
§  replace each transition probability (in Y) corresponding to a 

failure (except if they start at 0) by a constant θ and then 
scale all those starting from a given state 

§  take 0.5 < θ < 0.8 (say) 
§  for instance, 

from (1,2;a) to d: 
change qa to θ/2, 
change qb to θ/2 

§  result in this case: 
2,2 

1,2;a 

2,1;b 

1,1;a,b 

1,1;b,a 

d 

1-θ 

pb 

pa 

1-θ 

θ/2 

θ/2 

1-θ 

1-θ 

θ/2 

θ 

θ 

θ/2 
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symbolically, for an operational state x ≠ 0, 

before after 

x 

ε2 

ε1 a1 

a2 

x 

a2 
a1+ a2 

a1 
a1+ a2 

(1-θ) 

(1-θ) 

θ 
2 

θ 
2 

this is actually Balanced Failure Biasing, 
a (better) variant of the original FB 

0.5 < θ < 0.8 (say) 
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Why it works 

l  Call Π the set of paths π of the form π = (0,x1,x2,…,xm) 
where x1, x2, …, xm-1 ≠ 0 nor d, and xm is 0 or d. 

l  Call Πd the set of paths of Π ending at state d. 
l  γ = Pr( a generic path W belongs to Πd ). 
l  It is useful to write 

 
which can also be written 

l  For path π = (0,x1,x2,…,xm), we have 
 Pr(π) = Pr(W = π) = P(0,x1)P(x1,x2)…P(xm-1,xm), 

where P = t.p.m. of X.    

γ = Pr(π )1(π ∈Πd
π∈Π

∑ ),

γ = E 1 W ∈Πd( )#$ %&,
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l  Crude Monte Carlo for the estimation of γ means 
building N independent copies W1,…,WN of W, and 
computing γ* = ( 1(W1 in Πd ) + … + 1(WN in Πd ) ) / N, 
which reduces to counting the good paths, as we have 
seen. 

l  Suppose we change the P(x,y) into a new P ’(x,y). 
For a path π, we write 
  Pr ’(π) = P ’(0,x1) P ’(x1,x2) … P ’(xm-1,xm). 

l  Write now 
 
 
where L(π) = Pr(π) / Pr’(π) (called the likelihood ratio). 

  

γ = Pr(π )1(π ∈Πd
π∈Π

∑ ) = L π( )Pr'(π )1(π ∈Πd
π∈Π

∑ ),
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l  This leads to 
 
 
where E’ means that we use Pr’ (that is, P ’). 

l  To derive a new estimator, we must build N 
independent copies W1,…, WN of W, but using P’ 
now, and compute 
γIS = ( L(W1)1(W1 in Πd ) + … + L(WN)1(WN in Πd ) ) / N. 

l  This shows why γIS is another estimator of γ. 
l  If P’ is chosen such that the rare event is now a 

frequent one, the new estimator is more efficient than 
the crude one (more efficient here means basically 
with a smaller variance). See the references. 

γ = E' L(W )1 W ∈Πd( )⎡⎣ ⎤⎦,
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Improvement on FB 

•  Let us call a failure event consisting in the first 
failure in some class of components. 

•  Accordingly, a failure is any other failure 
event. 

•  Intuitively, it seems a good idea to give more “weight” 
to secondary failures, expecting to reach d more 
quickly this way. 

•  This leads to the Selective Biasing scheme shown in 
next slide. 
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BSFB 

symbolically, for an operational state x ≠ 0, 

this is actually Balanced Selective Failure Biasing, 
a good variant of SFB 

before after 
θ(1-ψ) 

a2 
a1+ a2 (1-θ) 

a1 
a1+ a2 (1-θ) x 

ε1 

a1 

a2 

ε2 

ε3 

ε4 

initial 
failures 

secondary 
failures 

x 
θ(1-ψ) 

θψ  
ε5 

θψ 

θψ 

1 
2 

1 
3 

1 
2 

1 
3 

1 
3 

0.5 < θ, ψ < 0.8 (say) 
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More variants 
l  Other ideas have been published and shown to be effective 

(names are not “standardized”): 
 
§  SFBS: SFB for Series-like systems 

Ø  for systems composed of a set of modules working in series, or being 
“close enough” to that behavior 

§  SFBP: SFB for Parallel-like systems 
Ø  similar to SFBS but for systems composed of a set of modules working 

in parallel (or being “close enough” to that behavior) 
§  DSFB: Distance-based SFB 

Ø  for systems where it is possible to evaluate with almost no cost the 
distance from any up state to d 

§  IDSFB: Inverse-Distance-based SFB 
Ø  an improvement of DSFB 

§  ISFB: Inverse SFB 
Ø  a method based on IS designed for queuing overflow estimation 

§  … 
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Drawbacks, limits 

l  First, the change of transition probability matrix (more 
generally, the change of dynamics, also called 
“change of measure”) is not always easy to find. 

l  Second, if we move too much the process toward the 
rare area of the state space, we can do even worst 
than Crude Monte Carlo. 
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Current trends in IS 

l  Adaptive IS: here, the change of the dynamics is 
done on-the-fly, during the simulation process. The 
changes adapt to what is happening with the 
estimation in progress. 

l  Zero variance approaches: there is a theoretical 
optimal change of measure: it actually corresponds to 
exact evaluation, and it needs to know the value of the 
target! So, it is (apparently) useless… 

l  …However, we can find recursive expressions of this 
optimal (and out-of-reach) change of measure, and 
they can suggest new measures that, in some cases, 
behave very well. A very active research area today. 
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4  The splitting approach 

l  Here, the idea is quite different. I will introduce it using 
an example. 

l  Suppose the rare event is a queue overflow, and we 
want analyze the overflow phenomenon, leading to 
customer losses. 

l  (For a single queue we can perform an exact analysis 
in many cases, but the same ideas hold for networks 
of queues, where exact computation is out of reach). 

l  If we simulate trajectories of the queue occupation, for 
instance starting from an empty queue, the rare event 
situation will make that overflow is hard to observe; in 
many cases, we must wait too much time to see the 
first one. 
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l  In IS, we will change the dynamics of the queue (i.e., 
the arrival and the service processes), in order to 
make overflow a frequent phenomenon. 

l  In Splitting, we define a set of M intermediate levels 
between level 0 (empty queue) to, say, level H (the 
queue storage capacity): 0 = l0 < l1 < l2 < … < lM = H. 

l  We start from level 0 and simulate N0 trajectories, or 
paths. Since l1 is much closer to 0 than H = lM, some 
of these trajectories, say R1, will (hopefully) reach next 
level l1. 

l  Each of these R1 paths will give birth to N1 new 
continuations, of which R2 will reach l2. 
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l  The paths that starting from 0 come back to 0 before 
reaching level l2, and those that starting from l1 come 
also back to 0 before reaching l2, are killed. 

l  The ratio p*1 = R1 /N0 is an estimator of p1, the 
probability for a path, starting at 0, to reach l1 before 
coming back to level 0. 

l  Pursuing the same way, we come up with a set of 
estimators  p*1, p*2, …, p*M, whose product is an 
(unbiased) estimator of the overflow probability γ.  
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Some details 

l  It should be clear that, due to the splitting procedure, 
we have much more chances of observing an 
overflow, and even many of them. 

l  On the other side, we are (perhaps) paying too much 
CPU time for this, because of all those killed paths. 

l  Question: is the balance positive for us, that is, more 
efficient than Crude Monte Carlo? 

l  Answer: many times yes, it is, even thousands of 
times more efficient. 

l  The details and the proofs come once we have 
specified the procedure we follow to choose the 
parameters of the algorithm: how many levels, how 
many splits, static or dynamic, etc.  
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Drawbacks, limits 

l  In some cases, finding an appropriate number of 
levels and a procedure for deciding how many 
paths must be created, is very hard. 

l  The theory behind this approach is just starting, and it 
is not easy in general to analyze the variance 
reduction obtained from a specific splitting procedure 
(that is, the efficiency of the procedure). 
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Some references 

l  Main references for author’s work on rare event 
analysis through simulation:  
§  “On the application of accelerating simulation methods in 

network analysis”, by J. Incera and G. Rubino, in PDPTA’00: 
Parallel and Distributed Techniques and Applications, Las 
Vegas, June 2000 

§  “MTTF Estimation using Importance Sampling on Markov 
Models”, by H. Cancela, G. Rubino and B. Tuffin, in Monte 
Carlo Methods and Applications, 8(4): pp. 312-341, 2002 

§  “Markovian Models for Dependability Analysis”, 
by G. Rubino and B. Tuffin, Chapter 6 in Rare Event 
Simulation using Monte Carlo, edited by G. Rubino and 
B. Tuffin, WILEY, pp. 125-144, MARCH 2009 
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§  “Approximate Zero-Variance Importance Sampling for Static 
Network Reliability Estimation”, by P. L’Ecuyer, G. Rubino, S. 
Saggadi, B. Tuffin, IEEE Transactions on Reliability 60(3): 
590-604, 2011  

§  “A new simulation method based on the RVR principle for the rare 
event network reliability problem”, by H. Cancela, M. El Khadiri 
and G. Rubino, Annals of Operations Research, Vol. 196, pages 
111-136, 2012 

§  “A splitting algorithm for network reliability estimation”, 
by H. Cancela, L. Murray and G. Rubino, in IIE Transactions, Vol. 
45, No. 2, pages 177–189, 2013 

§  “Balanced and Approximate Zero-Variance Recursive Estimators 
for the Static Communication Network Reliability Problem”, H. 
Cancela, M. El Khadiri, G. Rubino and B. Tuffin, in ACM 
Transactions on Modeling and Computer Simulation, vol. 25, 
no. 1, 19 pages, December 2014  
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5  Bounding techniques 
l  This a complement with respect to the main topic, 

Monte Carlo methods for rare events. 
l  Here, we don’t estimate but bound the metrics of 

interest. 
l  Let us illustrate the ideas with the evaluation of the 

asymptotic availability metric now, A(∞). 
l  We have an irreducible and homogeneous continuous time 

Markov chain X modeling system’s evolution. 
l  The (very large) state space S is partitioned into 

§  U, the states where system is up, 
§  D, the states where system is down. 

l  A(∞) = Pr( X(∞) belongs to U ) 
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Starting idea 

S 

U: up states 

D: down states 

X “lives most of the 
time” here (states in subset G) 

failures repairs 
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An example 

l  Suppose there are 3 types of components: a, b, c. 
l  Initially, we have 2 a-units, 2 b-units, 1 c-unit. 
l  System works if there is at least one component 

working per class. 
l  There is a single repairman working in FIFO order. 
l  States: 

§  initial state: (2, 2, 1) 
§  other states: (na, nb, nc; state of the repair queue), where na 

(resp. nb, nc) is the number of type a (resp. type b, type c) 
working units 

§  examples: (1, 2, 1; a), (1, 2, 1; a, a); (1, 0, 0; c, a, b, b) 
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0,0,0; a,a,c,b,b 

0,2,1; a,a 

A part of the associated graph 

2,2,1 

1,2,1; a 

1,2,0; a,c 

2,1,1; b 

2,2,0; c 

2,1,0; b,c 

1,1,1; b,a 

1,1,1; a,b 

0,0,0; a,b,b,c,a 

initial 
state 

U: up states 

D: down states 
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Main goal 

l  Build a new model X * keeping the G-part of X and 
replacing the rest by “a few states” 

l  All the problem is: which states, how many, which 
transitions (and which transition rates) among them 
and between them and the states in G? 

l  In some cases, this can be done in such a way that 
computing specific metrics in model X * we obtain an 
upper bound of the asymptotic availability A(∞) in X. 

l  Similarly, we can compute a lower bound of A(∞) 
using another small model following the same 
approach. 
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First, a couple of examples 

l  a communication network 
l  components are the network’s links; two types: 

§  primary links (80 units) 
§  secondary links (120 units) 

l  network “supports” the failure of 
§  1 primary link 
§  up to 5 secondary links 

l  1 repair subsystem; repair times are type-dependent 
and modeled by Coxian laws 

l  after repaired, primary links need some time to be put 
back on operation; for secondary links, this delay can 
be neglected 
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l  parameters’ values: 
o  failure rate of primary links: 0.00004 
o  failure rate of secondary links: 0.00003 
o  mean repair time of primary links: 1.0 

law: Erlang, 6 phases 
o  mean repair time of secondary links: 1.0 

law: Erlang, 5 phases 
o  post-processing of repaired primary links mean delay: 0.33 

l  State space size: 4 344 921 
l  Some results for the Asymptotic Availability: 

§  keeping only 226 states (≤ 5 comp. down), 
o     0.999 759 7120 ≤ A(∞) ≤  0.999 759 7471 

§  keeping 1826 states (≤ 10 comp. down), 
o     0.999 759 7349 ≤ A(∞) ≤ 0.999 759 7349 
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An infinite state example 
l  an Internet path followed by a specific packet flow: 

 
l  λ, µ1, µ2, µ3: rates 

l  state space size: 
l  values: λ = 0.2, µ1 = 0.7, µ2 = 1.5, µ3 = 0.2, H2 = 18, H3 = 10 
l  important performance measures here include loss or blocking 

probabilities; no analytical solution available 
l  after generating only 3839 states, absolute errors in all 

performance measures < 10-9; for blocking probabilities, 
the absolute errors were < 10-10 

λ µ1 µ2 µ3 

unbounded ≤ H2 ≤ H3 losses losses 

∞ 
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How it works 

l  Start by partitioning the state space S of Markov 
process X into classes. 

l  Class C(k) is, for instance, composed of the states in 
which there are k components down in the system 
(see slide 48). 

l  Usually, C(0) = { 0 }. 
l  Now, suppose for instance that from each x in C(k) 

there is at least a failure transition (to some state y in 
C(k+1)) and a repair transition (to some z in C(k-1)). 

l  Then, the global transition rate from C(k) to C(k+1) is 
necessarily upper-bounded by max{ total failure rate 
out of x in C(k) }. The same for lower bounds, and for 
repair rates. 
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l  We keep the states “on the left” of S unchanged: we 
set G = C(0) u C(1) u … u C(k), and replace each 
subset C(j ), j > k, by a single state cj. 

l  Then, using the previous mentioned bounds, we can 
build new models having sizes of the order of |G|, 
where the computation of the targeted metric provides 
bounds of the corresponding metric in the original 
model X. 

l  As the event of interest (e.g. reaching the set D of 
down states before coming back to 0) becomes less 
probable, the mass concentrates more on the left, and 
for the same G the bounds are tighter (or we need 
smaller G to achieve the same accuracy). 
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Drawbacks, limits 

l  The technique is quite general, but if it is not true that 
from any state in any class, there is at least a failure 
transition and a repair one, then computing the 
intermediate bounds can be difficult, or expensive, or 
simply impossible. 

l  In the case everything works, it can happen that G’s 
size is (too) large for achieving some specific accuracy 
level, and thus the computation of the bounds (too) 
expensive. 

l  This approach has, as the other ones, lot of room for 
improvements. Some have already been published.  
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References 

l  Main references for author’s work on bounding 
techniques: 
§  “Bound computation of dependability and performability 

measures”, by S. Mahevas and G. Rubino, IEEE T. on 
COMPUTERS, VOL. 148, NO. 3, pp. 188-196, JUNE 2001 

§  “Bounding the Mean Cumulated Reward up to Absorption”, 
by A. de Couto e Silva and G. Rubino, in Markov 
Anniversary Meeting, edited by A. Langville and W. Stewart, 
BOSSON BOOKS, pp. 169-188, 2006 

The first one concerns asymptotic availability and extensions 
to reward-based metrics (irreducible models). The second one 
concerns the MTTF and extensions to reward-based metrics 
(absorbing models). 
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6  Summary 
l  Rare event analysis is crucial for critical system’s 

design, analysis, management, … 
l  Accurate representations of complex systems often 

lead to very large models, so, to the use of simulation.  
l  Critical systems mean rare event analysis, and rare 

event analysis through direct simulation is hard, and 
often impossible. 

l  Main point of the presentation: 
§  sophisticate simulation techniques exist to analyze rare 

events efficiently, and they are currently being improved 
§  bounding techniques also exist for dealing with the same 

situation   
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l  For simulation, model’s size has little impact on the 
efficiency of the techniques; the bottleneck is the rarity 
of the events of interest. 

l  Simulation techniques need specific conditions to be 
applied, but there are many techniques, and some of 
them can be applied to wide ranges of systems. 

l  Bounding techniques have also conditions for their 
use, more restrictive than those for simulation 
methods. But some ideas can be used in many cases 
with extremely high efficiency (the technique can be 
seen as belonging to the numerical analysis field in 
these cases). 
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Missing in the presentation 

l  Inhomogeneous models 
§  components’ behavior evolves with time 

l  … combined with models with local clocks 
§  there are “local times” together with the global one 

l  … using semi-Markov processes, and k-order 
Markovian ones 

l  … combined with models handling dependency 
between components 
§  the behavior of some components depend on what happens 

to other parts of the system 

l  Things are much more complex here and just a few 
ideas are being developed. 
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The judoka’s principle 

l  Rarity impacts standard simulation procedures 
“monotonically”: the rarer the event of interest, the 
harder its analysis. 

l  For Importance Sampling or for Splitting, often 
the rarer the event, the more efficient the method. 

l  In bounding techniques, the situation is the same: the 
procedures work much better when the target has very 
small probabilities. 

l  The judoka’s principle: “use the strength of the 
opponent”: the rarer the event, the more efficient the 
techniques described here to analyze it. 
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A current project 

l  Bounds and Monte Carlo techniques can be 
combined. This has been done in some particular 
cases with great success. 

l  One project in preparation in Europe, under my 
direction, consists in developing this line in very 
general contexts. 

l  This is being prepared in coordination with some 
players on the application side: in energy production 
(for nuclear risks) and in avionics (risks related to 
crashes, for instance). Door is open for other 
participants. 

l  The project includes the exploration of some of the 
extensions previously mentioned (slides 14 and 59). 
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So, only positive messages? 

l  With more time, two topics that deserve specific 
attention: 
§  financial systems and rare events 
§  software-based systems and rare events 

l  In these areas, there are very specific problems to 
solve, in particular in the second, where some 
structural problems seem very hard to address. See 
§  “The Infeasibility of Quantifying the Reliability of Life-Critical 

Real-Time Software”, by Ricky W. Butler and  George B. 
Finelli, IEEE T. on SOFTWARE, VOL. 19, NO. 1, JAN 1993 
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l  From the scientific foundations viewpoint: 
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Where to Get More Information 
l  Main references: the two following books, the first on 

simulation, the second on analytical and numerical 
techniques, including bounding procedures: 
§  “Rare Event Simulation using Monte Carlo Methods”, edited by 

G. Rubino and B. Tuffin, Wiley, 2009 
§  “Markov Chains and Dependability Theory”, by G. Rubino and 

B. Sericola, Cambridge U. Press, 2014 

l  They contain many references on the topics of this 
presentation, and on related ones (for instance, on 
Markov chain analysis using numerical procedures, as 
well as on related theoretical results). 
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For Monte Carlo issues, see 

G. Rubino, B. Tuffin (editors and 
co-authors of more than half of 
the chapters), 

 “Rare Event Simulation 
 Using Monte Carlo Methods” 

John Wiley & Sons, 
271 pages, 2009. 
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For bounds and other mathematical 
aspects, see 
 

G. Rubino, B. Sericola 
 “Markov Chains and 
 Dependability Theory” 

Cambridge University Press, 
278 pages, 2014. 
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Questions 
 
 

Thank you for your attention. 

Do you have any questions? 


