IoT Wireless Access Networks: Where to Go From Here?

Andrei Alexandru Enescu, Ph D

EOS Electronic Systems, CEO

20-Feb-2017

Why This Presentation?

• IoT Market is **BIG**

- Sensors
- IoT Hw boards
- Gateways & Connectivity
- Servers
- Applications
- Big Data Software
- Visualisation
- Security

BAIN & COMPANY

\$60 tril. investment during the next 15 years

Cumulative \$470B revenue by 2020

15.4 bil. devices (2015) -> 30.7 bil. devices (2020) -> 75.4 bil. Devices (2025)

McKinsey&Company

\$900M (2015) -> \$3.7B (2020) CAGR = 32.6%

Why This Presentation? (2)

- IoT infrastructure grows fast but non-organically
 - Time to market without scalability and time for harmonization
- There are multiple options for each piece of the infrastructure
- Limited guaranteed interaction between the pieces

Goal of the Presentation

- Objectively present the options for the wireless connectivity of things.
- Focus only on Low Power Wide Area (LPWA) that can connect anything to anything
 - Exclude Bluetooth, Zigbee, WiFi
- Highlight which technology is suitable for different use cases

Who Am I?

- B. Sc. And Ph D from University Politehnica of Bucharest
 - MIMO Communications & Algorithms
- Research Activity
 - DSP Adaptive Filtering
 - Wireless Receivers MIMO decoders
- Baseband Software
 - Technical Manager for Baseband eNodeB SoC Software
- IoT
 - CEO of an emerging IoT start-up

The Company That I Represent

- Founded in 2016
- Traffic Management Solution

• Track 3D displacements of infrastructure

•LPWA Technologies

Criteria to analyze contenders

Comparison analysis

Conclusions

What is LPWA?

ELECTRONIC SYSTEMS

What is not LPWA (per se)?

ELECTRONIC SYSTEMS

Sigfox – Flying IoT at Supersonic Speeds

LoRA – Together We Can Go Further

Founded in 2015 at MWC

Senet and Actility raised \$51M

LoRa Alliance membership went up 3x

Orange and Bouygues making it a priority in EU

CSS	5/15km	\$2-\$5	5-10 years
BAND	433(A)/	868(EU)/9	915MHz(US)
BW	12	5/250/50	0kHz
MOD	CSS		
PWR		20dBm	
LINK		157dB	
RATE	0.0	5-100kbps	

NB-IoT – When The Operators Start Cashing In

NB-IoT Chipsets available in 2017

Roll-out in Europe in 2018 (driven by Vodafone)

To use GSM infrastructure or existing LTE

	DM DMA	5/15km	\$5	10 yea	irs
		00/900MH	z + any	LTE ba	nd
BW		200k	Hz		
MOD		OFD	M		
PWR		20dB	m		
LINK		157d	В		
RATE	0.33	-22kbps / 1	.00kbps	s (EU)	

Other LPWA Technologies

Supported by **Ingenius** 1MHz @2.4GHz licenseexempt band 7.5km coverage range

DL/UL: 156/624 kbps

ubiik Supported by

12.5kHz @900MHz licenseexempt band

160dB link budget

DL/UL: 156/624 kbps

12.5kHz @900MHz licenseexempt band 10km coverage range

DL/UL: 100bps

n\vave

PARAMETER Nodes served by base station	^{GSM / CDMA}	IEEE 802.15.4.MESH NETWORKS	NWAVE 1,000,000
Typcial Communication Range	3/2 _(km/mi)	30/100 (m/ft)	10/7 (km/mi)
Energy Radiation	2000 mw	10 _{mW}	25-100 _{mW}
Autonomous Operation (2.5Ah battery)	2months	1-2 _{years}	10 _{years}
Signal Penetration within buildings	Average	Average	High
Cost of base station	High	Low	Low
Cost of Modem	High	\$8-12	Low

Comparison Criteria

ELECTRONIC SYSTEMS

Coverage Area

High interference in unlicensed bands with no strong countermeasures

Marketed data rate is actually low at max range

Reliability of the link at max range

Reliability in NLOS scenarios

NB-IoT wins

(licensed spectrum)

Throughput

Throughput will largely depend on channel conditions

Minimum requirements

- Frequency of reports
- OTA firmware update
- Debug capabilities
- Signaling (handover)
- Symmetrical

LoRa & NB-loT win

(rate flexibility)

Power Consumption

All technologies cover a span of **5-15 years**

- Battery
- Transmission power (range)
- Frequency of reports
- Application and sensor(s)

The power (consumption) of SOFTWARE:

- OS
- Sleep mode
- Algorithms

All win

(because we can't say otherwise)

Security

- Tremendous importance
- Hijackers may inject false data in the network or access real data

	Sigfox	LoRa	NB-IoT
User authentication	Y (16-bit)	Y (32-bit)	
Communication	Ν	Unique Network key (EUI64) Unique Application key (EUI64) Device specific key (EUI128)	MNO native security mechanisms

LoRa & NB-loT win

Time to Market

ELECTRONIC SYSTEMS

Investment Requirements

Conclusions

- There is and will be no clear winner to the IoT race
- Impossible to meet all KPIs with one single technology
- Choice on connectivity will depend on the actual use case
- Aggressive marketing puts Sigfox ahead of its competitors
- NB-IoT will catch up in 2-3 years
- Time to market will triumph, harmonization will fall

