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Abstract—We are living in the era of Big Data. Spatial and 

Spatiotemporal Data are not an exception. Mobile apps, cars, 

GPS devices, UAVs, ships, airplanes, space telescopes, medical 

devices and IoT devices are generating explosive amounts of 

data with spatial characteristics. Web apps and social 

networking systems also store vast amounts of geo-located 

information, like geo-located tweets, or captured mobile users' 

locations. Modeling, storing, querying and analyzing big 

spatial and spatiotemporal data is an active area of basic and 

applied research with many challenges. Multicore CPU / GPU 

processing techniques and parallel and distributed frameworks 

utilizing cloud infrastructures are being created and extended 

for novel big spatial data management solutions. The purpose 

of this track is to act as a forum where recent advances in Big 

Spatial (and Spatiotemporal, considered as a special case of 

Spatial) Data Management will be presented and discussed. 
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I.  INTRODUCTION 

In today’s world, vast amounts of data are being created 
from numerous applications and sources (e.g., sensor data, 
archives, docs, business apps, web, social media). The term 
Big Data is used to denote such data. Big data refers to data 
sets that are too complex, or voluminous for traditional data 
management systems to handle.  

Spatial Data is data expressing the geographic features of 
objects and elements on, below, or above the earth’s surface. 
Such data appear in geography related applications, e.g., 
Geographic Information Systems (GIS), astronomy, 
environmental monitoring, earthquake research, weather 
forecasting, traffic management. However, spatial are also 
multidimensional data and this term is used extendedly to 
express multidimensional data from several application 
domains beyond geography, like medicine, or biology.  

Mobile apps, cars, Global Positioning System (GPS) 
devices, Unmanned Aerial Vehicles (UAVs), ships, 
airplanes, telescopes, medical devices and IoT devices are 
generating explosive amounts of data with spatial 
characteristics. Web apps and social networking systems also 
store vast amounts of geo-located information, like geo-
located tweets, or captured mobile users' locations. We are 

living in the era of big spatial data [1]. Capturing the 
evolution of spatial data in time gives rise to an even more 
complex concept, Spatiotemporal Data. Due to their 
multidimensional nature, spatial / spatiotemporal data are 
harder to handle than data in traditional applications (e.g., 
names, numbers, dates, etc.). 

Data Management is a broad term used to describe 
practices, systems and theories for properly managing data of 
an enterprise, scientific, or social activity.   Within this term, 
models, architectures, systems, analysis, design, storage, 
querying, mining, security, quality, governance and 
integration involved throughout the data lifecycle are 
included. Spatial Data Management is the extension of data 
management to the more complex spatial-data universe. Big 
Spatial Data Management is even more demanding and 
requires the exploitation of modern computing features.  

In stand-alone systems, the exploitation of large amounts 
of main memory, Solid-state Drives (SSDs), multiple cores 
of Central Processing Units (CPUs), or the massively parallel 
architecture of Graphics Processing Units (GPUs) [2] can be 
used for big spatial data management. Parallel and 
distributed computing using shared-nothing clusters for big 
data management is a research trend during last years. 
MapReduce is a programming model suitable for such 
clusters and Apache Hadoop [3] is a popular open-source 
software framework using this model. Apache Spark [4] is 
another, more recent, open-source cluster-computing 
framework, developed to overcome limitations of Apache 
Hadoop. Such systems are usually implemented within a 
Cloud Computing environment and, beyond processing 
speed, they provide failure resilience and scalability. Several 
spatial extensions of Hadoop (e.g., Hadoop-GIS [5] and 
SpatialHadoop [6]) and Spark (e.g., SpatialSpark [7], 
LocationSpark [8], SIMBA [8]) have appeared during last 
years.  Each of these systems supports storage and querying 
of big spatial data. However, these systems have significant 
differences regarding their supporting distributed computing 
frameworks, data models, programming languages, 
geometric and spatial processing Application Programming 
Interfaces (APIs) and algorithms utilized for data processing. 
Studying their relative performance, as well as, enhancing 
their cababilities is an active area of research. 



II. SUBMISSIONS 

The first paper of the track is a joint effort of George 
Mavrommatis, Panagiotis Moutafis and myself. It is entitled 
“Closest-Pairs Query Processing in Apache Spark” and is 
related to efficient query processing in a parallel and 
distributed framework. More specifically, the (K) Closest-
Pair(s) Query (KCPQ) is studied. This query consists in 
finding the (K) closest pair(s) of objects between two spatial 
datasets. This query is among the popular ones in spatial data 
processing and its computation is demanding, since all the 
possible pairs that can be formed between the two spatial 
datasets are candidates for inclusion in the final result. In this 
paper, processing of this query in Apache Spark is presented. 
The presented algorithm separates data in strips and utilizes 
the plane sweep technique (a technique well known in 
computational geometry) within each strip and between 
strips. An experimental analysis of the performance of this 
algorithm, based on big real-world datasets, is also included. 
The future plans of the authors include the elaboration of this 
algorithm to reduce the network communication traffic 
within the distributed framework, the calculation of an 
improved initial bound for faster processing of data, the 
comparison of the performance of this algorithm against 
other solutions working in parallel and distributed 
environments and the study of its scalability. 

The second paper of the track, entitled “A Raster SOLAP 
Designed for the Emergency Services of Brussels 
Agglomeration”, is authored by Jean-Paul Kasprzyk and 
Jean-Paul Donnay. It presents the design and implementation 
of a Spatial On-line Analytical Processing (SOLAP) system 
for decision making in emergency services of Brussels 
agglomeration.  To quickly reach incident locations, 
emergency services have to fairly distribute their resources in 
the area, based on analysis of risk data, infrastructure 
information and socio-economic factors.  The system 
developed allows decision-makers to generate risk maps and 
to compare them with the accessibility of resources. 
Moreover, it provides the capability to perform simulations 
on resource locations and test their impact on accessibility. 
This system is based on the raster model (a model best suited 
for the representation of data which are continuous in space). 
Following a state-of-the-art section, where risk analysis and 
SOLAP tools are reviewed, the architecture of the system 
developed is presented in detail. The implementation of this 
system with open-source tools and its interface are presented 
in the sequel. The authors mention as further improvements 
the inclusion of data about the speed of roads that depend on 
hour of the day and day of the week and the inclusion of the 
durations of historical interventions from historical data.  

The third paper of the track is authored by Maria Koziri 
and Thanasis Loukopoulos. It is entitled “Sensor Selection 
for Resource-Efficient Query Execution in IoT 
Environments” and presents an algorithm for selecting a 
subset of sensors that are distributed in space for answering a 
spatial query with adequate accuracy of the result, while 
minimizing the total energy consumed. Such sensors may 
exist in an Internet of Things (IoT) environment and can 
scale to the orders of millions or even billions, especially in 

future and emerging applications. Sensors might operate on 
battery, therefore, reducing energy consumption can extend 
their lifetime.  This paper presents a rigorous problem 
formulation that expresses the trade-off between increasing 
quality of query results and resource consumption. Solving 
this problem can be shown to be NP-hard. Therefore, 
heuristics could be used to compute optimized solutions. 
Next, a greedy algorithm is presented. This is a two-step 
algorithm. In the first step, it covers one of the constraints 
expressed in the problem formulation and in the second step 
it iteratively optimizes the solution. This algorithm is 
experimentally compared against random assignment of 
sensor subsets. The results indicate that the greedy 
alternative leads to significant improvements in relation to 
random assignment, regarding resource consumption. 

  

III. CONCLUSION 

The BSDM special track includes three papers that relate 
to different topics among the broad range of topics included 
in Big Spatial Data Management. The audience will be 
informed about arising algorithms, applications, systems and 
theory in this thriving research domain. 
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