

3D-Crime Scene/Disaster-Site Reconstruction using Open Source Software

Dirk Labudde 13. April 2016

Introduction

FoSIL

2013 Fukushima Earth Quake and atomic disaster

Resilience-by-Design:

Supporting the processes, as a consequence of the introduction and dissemination of new technologies, in the prevention and response phase of the resilience cycle...

Monitoring Emerging Technologies

FoSIL

Resilience-by-Design:

..utilizing Open Source Software for the development of assistance tools in terms of modeling, visualization and simulation of different resilience scenarios.

FoSIL

Phase 1 – Victim Rescue

Phase 1 – Victim Rescue

- Gathering as much information as possible about the event-site
- Monitoring/observation of unknown environments in a fast and save way
 - Fast -> important for victims to survive
 - Safe -> important for rescue forces

The spatiotemporal data gathered in this way can be used for supporting decision makers with respect to targeted and safe management of rescue teams and the fast locating of victims.

6

Motivation

Application of Drones?

Application of Drones (Unmanned Aerial Vehicles, UAV)

FoSIL

MikroKopter MK Okto XL 6S12

small, fast to set-up, easy to fly

- very maneuverable
- capable flight assistance systems
- reasonable flight time and range
- soft- and hardware upgradability
- video downlink (SLR, infrared, ...)
- automated waypoint flight
- wireless flightplan uplink
- affordable!

FoSIL Nothing new ... isn't it? LOW COST UAV FOR POST-DISASTER ASSESSMENT IEEE Africon 2011 - The Falls Resort and Conference Centre, Livingstone, Zambia, 13 - 15 Sept ndea*, P. Boccardo*, S. Dequal*, F. Giulio Tonolo h*, D. Mare chino *. M. Piras * Development of an UAV for Search & Rescue di Torino, DITAG, Torino, Italy(iosif, bendea, piero, boccardo, sergio, dequal, davide marco piras)/gpolito.it ^b ITHACA, Torino, Italy – fabio, giuliotonolo@ithaca.polito.it Applications Commission VIII, WG VIII/2 Mechatronic Integration for a Quadrotor He KEY WORDS: UAV, Desaster Ma nt, Photogrammetry, Autopa ABSTRACT You Tube 3D scanning and imaging for quick documentation of crime and accident scenes L. Barazzetti ^b, R. Sala^c, M. Scaioni^{a,4}, C. Cattaneo^{*}, D. Gibelli^{*}, A. Giussani^{*}, P. Poppa^{*}, F. Roncoroni^{*}, A. Vandone^c ⁸ Università degli Studi di Milano, Sezione di Medicina Legale, LABANOF, Milano, Italy ^b Politecnico di Milano. Dept. B.E.S.T., via M. D'Oggiono 18/a. Lecco, Italy 23900 ^c Politecnico di Milano. Dept of Mechanics, Milano. Italy <alberto giussani, remo.sala, luigi barazzetti, fabito roncoroni>@polimi.it ambra, vandone@mail.polimi.it ⁴Tongji University. Dept. of Surveying and Geo-Inform 1239 Siping Road, Shanghai, P.R. China 200092 marco@tongji.edu.cn ABSTRACT cumentation of complex scenes where accidents or crimes occur on analyses and lesson learning. Today 3D terrestrial laser sc achiever and accident and accident accid MikroKopter: 3D-Modelle aus Luftbildern Holger Buss 1.760 Aufrufe A Tales Me 161.01

Fast 3D Reconstruction based on aerial Images

FoSIL

Test of Concept

17 *pseudo-aerial images* of the Frauenkirche in Dresden obtained via Google Earth

Phase 2 – Victim Identification

FoSIL

Phase 2 – Victim Identification

In Phase 2 the identification of an unknown deceased person is the main priority. Generally, this is an important task in **forensic anthropology**. There are various methods for identification, such as

which presuppose the existence of **reference material** of the missing person; **however**, if there is no evidence of a person's identity the only possibility is often the utilization of **forensic facial soft tissue reconstruction**.

Forensic facial soft tissue reconstruction:

This method is based on the high recognition level of a human face on the basis of **bone** structure characteristics of the skull and its anatomical features.

computer-aided 3D facial soft tissue reconstruction

16

Fo SIL

FoSIL Facial soft tissue reconstruction :: Classical reconstruction methods **Objectives/aim:** > creating a possible real-life, (three) dimensional model of the face on the basis of: individual bony structures data from medical imaging procedures photographs in conjunction with anatomical findings of . forensic medicine models are used to support : the authentic reconstruction of the face of a deceased, no longer identifiable person police investigations in identifying unknown remains

> often last option for heavily skeletonized finds

Facial soft tissue reconstruction :: Classical reconstruction methods

sculptural reconstruction (3D)

- creating a plaster cast of the skull (clay, wax , plastics)
- modeling of muscle and tissue layers

hand drawing (2D)

- reconstruction on the basis of an image of a skull and tracing paper in scale 1:1
- used identikit software in Germany: "ISIS" or "Facet"

FoSIL

FoSIL

Facial soft tissue reconstruction :: Classical reconstruction methods

Problems of classical methods of facial soft tissue reconstruction

- replication of the skull due to ethical limitations
- time-consuming reconstruction of injuries and destruction
- no relation to anatomical points
- conditional flexibility over subsequent changes of models
- comparison of database entries with models only feasible with interim steps

high costs and expenditure of time

>high costs and expenditure of time

Facial soft tissue reconstruction :: Computer-aided reconstruction methods

2D facial soft tissue reconstruction

- correlation of skull parameters with existing image files (portrait photos)
- automated creation of a phantom image

> 3D facial soft tissue reconstruction

- three-dimensional digital acquisition of a skull
- virtual modeling of facial soft tissue using anatomical points (so called landmarks)

allows a faster and more flexible reconstruction process

> allows a faster and more flexible reconstruction process

FoSIL

Development and application of a novel, cost-effective and flexible process for computer-aided 3D facial soft tissue reconstruction using open source software.

- suitability test of variety of recording media
- analysis and application of prediction methods for facial features
- identification of time consuming process steps
- automatic placement of anatomical points with manual override
- creation of a model library of variant morphological facial features

FoSIL

FoSIL

Digitization of the skull

- Recording media: SLR Nikon D7100 with two different aperture settings and an iPhone 4 (three photo sets á 96 Images)
- > gapless recordings with well-defined angles 360° around the skull

Fo SIL

Reconstruction of selected facial features - nose shape

- > Reconstruction of nasal forms by the presented methods using Blender
- > superposition of the models with a skin texture

- comparison of 3D models with photographs of the deceased person
- due to insufficient quality only a qualitative comparison was done
- best modell by method presented from George

Facial soft tissue reconstruction

- cost alternative process through the use of open source software
- licence-free software offers great flexibility for the reconstruction process
- confirmed suitability of photographs to create sufficient 3D models
- use of CT data (InVesalius for evaluation of DICOM data)

FoSIL

Facial soft tissue reconstruction

FoSIL

Crime scene reconstruction

CAD-based crime scene reconstruction

FoSIL

background to the selected case

- homicide
- victim: prostitute
- crime scene: work site of the victim
- available information:
 - images
 - technical sketches
 - measures

Blender-based reconstruction of crime scenes

FoSIL

FoSIL

fReconstruction of a crime scene (real case).

Crime Scene Reconstruction

- background for the selected case
 - homicide
 - victim: little girl, eleven years of age
 - crime scene: house of the perpetrator, graveyard
 - available information:
 - images
 - technical sketches
 - measures

Simulation Visualization of the house and flat situation Crime scene

Dissemination of particles (gas) in urban systems

Pilot project

process-based documentation and plausibility consideration of Mantrail-employments in urban and natural systems

Victim Rescue and Search

Introduction – Man trailing

Mantrailing is an "art" of following one person's scent/odor and later identifying that person or the end of the trail.

supporting the policing and to search missing (individual) persons

- trained on the human odor
- recognize individual human odor from clothing or tissue

Fo SIL

FoSIL

Aim of the Project

- > We are interested in the behavior of the dog and the odor distribution
- > Roll of the odor receptors (membrane proteins) \rightarrow biological mechanisms
- Implementation of the information for odor distribution in urban and natural systems in a software
- > Simulate the trail to created legal usable probability
- documentation an plausibility consideration
- Influence of weather conditions

Factors, Statistics and Layer Concept

FoSIL

BigData – Predictive Policing

FoSIL

Towards Predictive Policing: Knowledge-based Monitoring of Social Networks

Michael Spranger, Florian Heinke, Steffen Grunert and Dirk Labudde University of Applied Sciences Mittweida Mittweida, Gernany Email: {neus.surame} @hs-mittweida.de

lbstract—Increasing the resilience of the society against dis-ers, such as disasters, attacks or threatening groups, is one he biggest challenges. Recent events highlight the importance resilient society and steps which are required to be taken in lignce engineering. A priori the optimal way to handle such

- Extraction of profiles for monitoring
- cours of pr Such and o plans fram is pro as th and o In • Extraction of post or comment content
 - relating to the threat ontology and a
 - sentiment analysis
 - \rightarrow enables short-term reaction
 - Simulation of temporal development of groups and hot-spots

→enables long-term resource and strategic planning

· Increasing resilience

Open Source Software for different (sub) processes in the resilience cycle

FEEL FREE TO ASK QUESTIONS

VISIT US AT: www.bioforscher.de/FoSIL