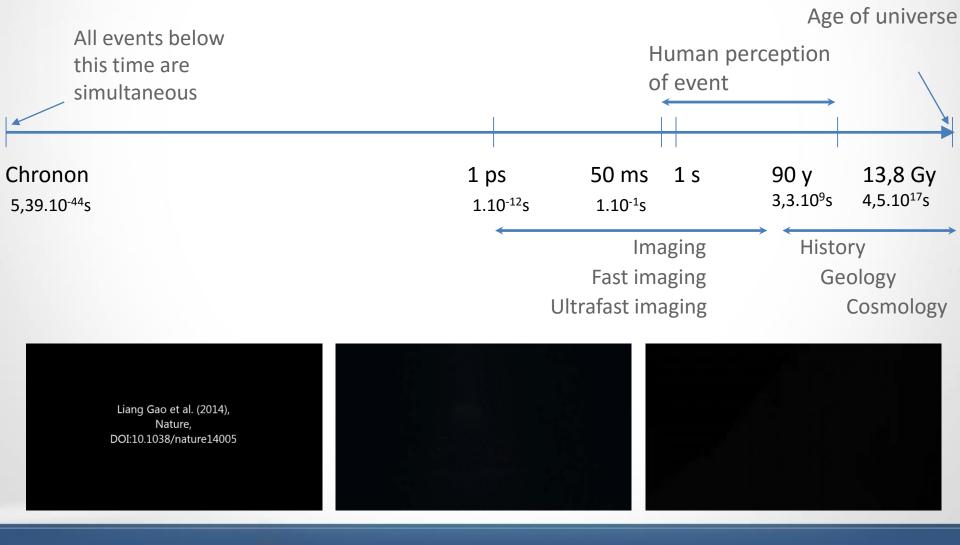


Keynote : SIGNAL 2016 High Speed Image sensors

Pr Wilfried Uhring University of Strasbourg and CNRS Icube laboratory, UMR 7357

27 June 2016 – Lisboa, Portugal

Outline


• Just history, a state of the art and future ...

The time scale and the human perception of event

3

19th century - Fathers of Photography

1826 - Joseph Niépce

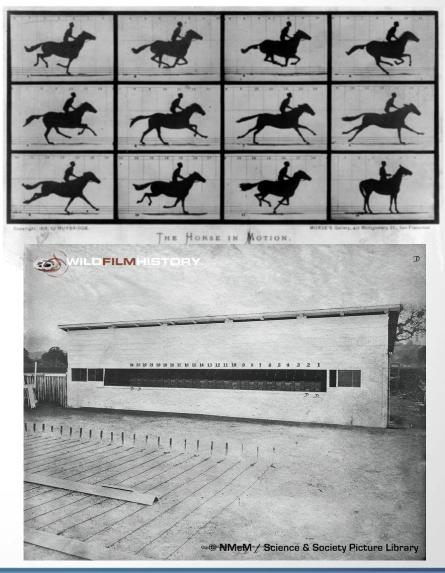
- Plate coated with Judea bitumen
- Mean exposure time 10 hours

• 1838 - Louis Daguerre

- Silver plate exposed to chemical vapor
- latent image that has to be « fixed »
- Daguerréotype
- Mean exposure time 30 min
- French government bought the invention and give it to the world



Fig. I. 1: "Point de vue du Gras", 1826. Earliest surviving photograph taken by Niépce.



bouievaru uu temple - Paris

19th – Birth of High speed photography

• 1878 Eadweard Muybridge

- Use of collodion → allows short fast exposure time but have to be used before It get dry
- Mean exposure time 500µs
- Use 24 different cameras triggered by a string
- ➔ Only 24 frames

20th century – first real high speed camera

1926: two high speed camera systems

British Heape-Gryll

- 4 tonnes, 8 horsepower
- 5000 frames per second
- Film drum

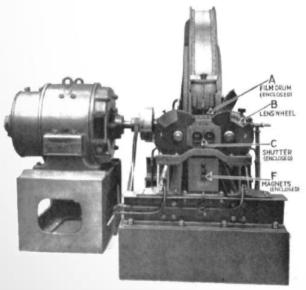
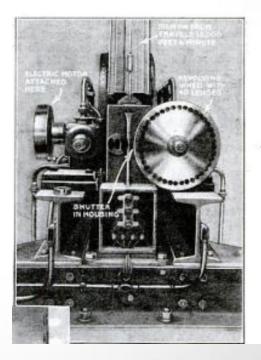
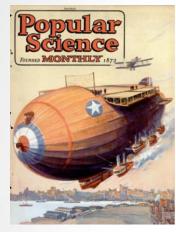
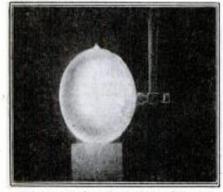



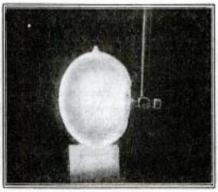
Fig. I. 6: Photograph of the Heape and Grylls's Machine for High-speed Photography [Hea26].


American Francis Jenkins

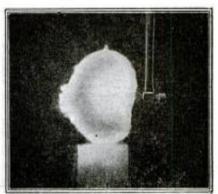
Wilfried Uhring

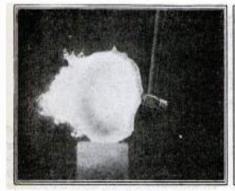

Icube, University of Strasbourg and CNRS

20th - popular science October 1926



High-Speed Movies-5000 a Second


Marvelous New Camera Watches a Hammer Smash a Vacuum Bulb


Photographed at the instant of impact

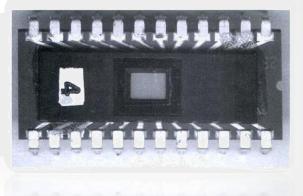
Appearance after 8/2500 of a second

Inrush of air breaks opposite side

The impact side still little altered

The whole bulb is crumbling now

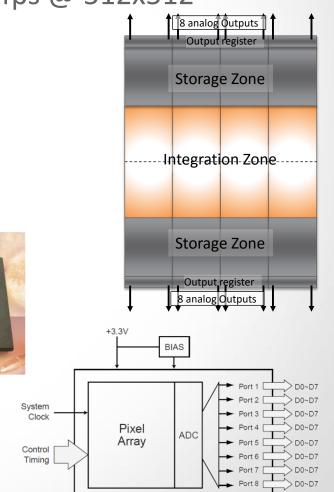
1/100 of a second after impact


20th – Digital high speed video

CCD201ADC 100 x 100-Element Area Image Senso CHARGE COUPLED DEVICE S.N. 14123

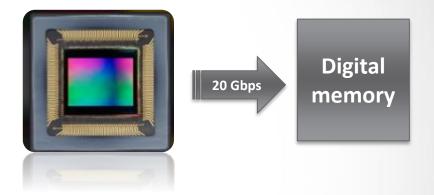
 1973, Fairchild first CCD image sensor (100x100)

- First digital high speed video camera
- Frame rate
 - 4500 fps (256 x 256 Pixel),
 - 40500 fps (64 x 64 Pixel)
- max. frames 1024
- Resolution
 256 x 256 Pixel
- Grey levels 256



Wilfried Uhring *Icube, University of Strasbourg and CNRS*

2000 – The CMOS revolution


- 2000, ICube lab designed camrecord 1000 fps @ 512x512
 - 16 outputs frame transfer CCD sensor
 - ➔ 16 external ADCs and 256MB memory
 - → Time to Design the camera : 3 years
- Meanwhile, CMOS sensors for high speed imaging appeared
 - **PB1024** Photobit (E.Fossum)
 - 500 fps @ 1024x1024
 - 1024 column 8 bits ADCs
 - 528 Mbytes/s (8x8bitx66MHZ)
 - ➔ Time to design the camera : 5 months

Wilfried Uhring *Icube, University of Strasbourg and CNRS*

Current High speed video sensor

Optical format	4/3"
Active resolution	2368 x 1728 pixels
Pixel	7um pitch PPD global shutter pixel
Full well	20,000e- in 5T; 45,000e- in 3T mode
Read Noise	22e- (AM41V4) 18e- (AM41V4ZC)
Responsivity @ 550nm	8V/Lux-s (AM41V4) 11V/Lux-s (AM41V4ZC)
Conversion gain	70 uV/e- (AM41V4) 95uV/e- (AM41V4ZC)
Nominal Frame Rate	500 Frames/s @ full resolution
Maximum Frame Rate	700 Frames/s, 7-b ADC performance
Column ADC	10b
Data Output	16 ports @ 10b wide per port, CMOS 1.8V

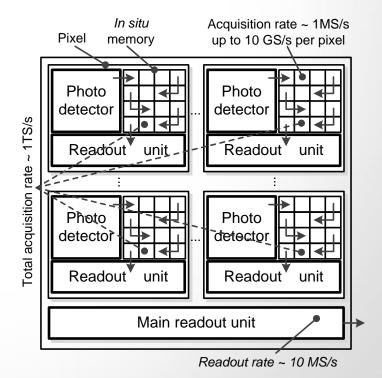
10

- LUXIMA AM41
- 2 Gpixel/s
- 1 column ADC
- 20 Gb/s

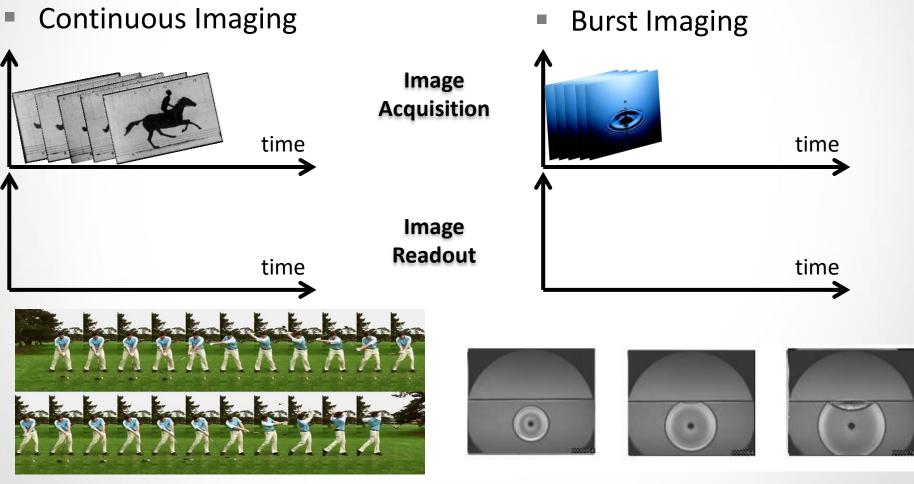
800x600px, 1276fps, 1/3003s

21th - Current High speed video

- State of the art high speed video camera
 - Phantom v2511,
 - 25kfps @ 1280 x 800
 - 1,000,000 @ 128 x 16
 - Record time : 96 GB filled in 2.6 second


- The limit of conventional high speed video is due to I/O chip max speed
 - 25 Gpixel/s, 12 bits → 300 Gb/s !!
 - Present fastest commercial single-laser-single-fiber network connections max out at just 100Gbps, 4 wavelengths at 25Gbps

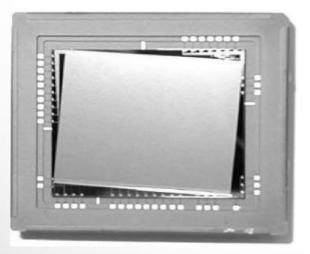
Wilfried Uhring *Icube, University of Strasbourg and CNRS*

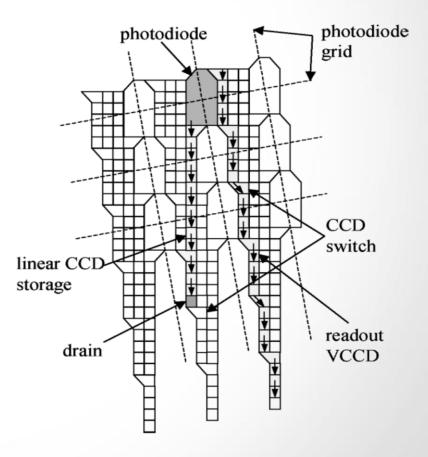

- 21th Ultrahigh Speed solid state camera¹²
- How to overcome the limit of the sensor I/O speed ?

Keep the data in the sensor ! ;-)

- Concept introduce by Elloumi In 1994
- Acquire the scene in a burst of images stored inside the pixel
- Readout the sequence of images at a conventional data rate

Burst imaging concept

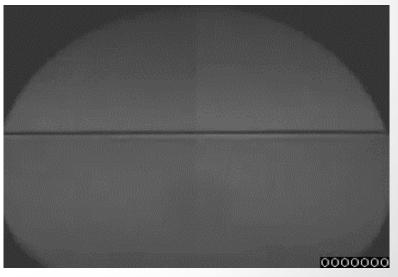



Up to 25 kfps @ 1 Mpix → up to 25 Gpix/s

100 kfps up to 1 Gfps → up to ~ Tpix/s

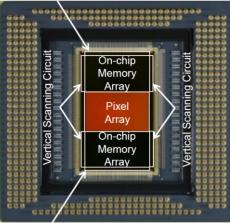
• CCD technology (by Etoh)

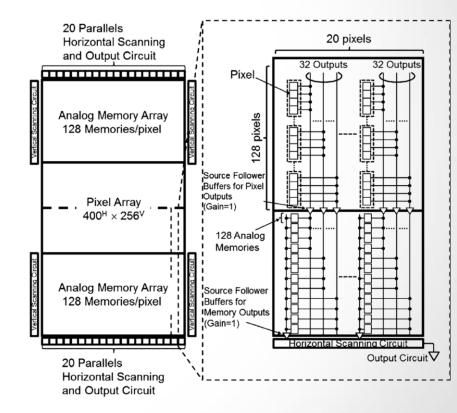
- 1999
- 1 Mfps, 100k pixels
- 100 frames
- Speed limited by CCD transfer efficiency



14

- Shimadzu
 - Model HyperVision HPV-2
 - 312x 260
 - 100 frames
 - Up to 1 Mfps
 - Acq. rate 81 Gpixel/s

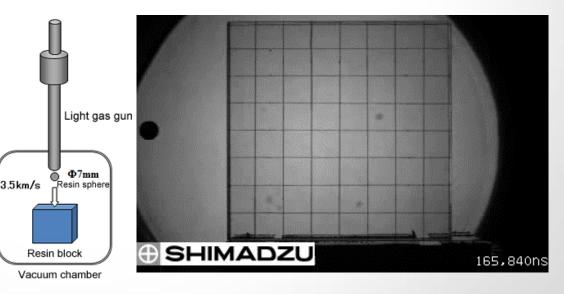

15


Shock wave from an explosive exploding underwater (Recording speed: 1,000,000 fps)

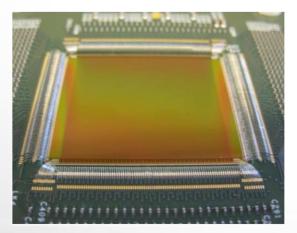
- CMOS Technology (by Sugawa)
- 2013, 180 nm
- Up to 20 Mfps, 100k pixels
- 128 frames
- CMOS cap memories
- Good fill factor 37%

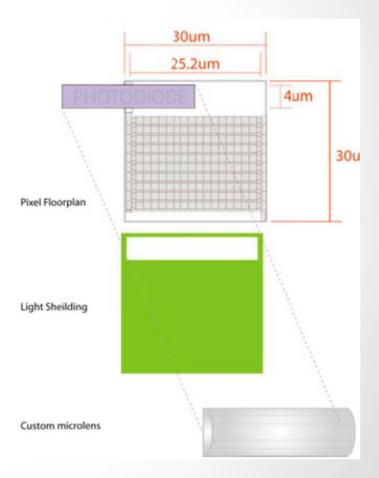
Horizontal Scanning and Output Circuits (20 Parallels)

Horizontal Scanning and Output Circuits (20 Parallels)


16

- Shimadzu
 - Model HyperVision HPV-X
 - 400 x 250
 - 128 frames
 - 10 Mfps
 - Acq. rate 1 Tpixel/s


High-Speed Collision of Resin Sphere Recording Speed: 2 million frames/s



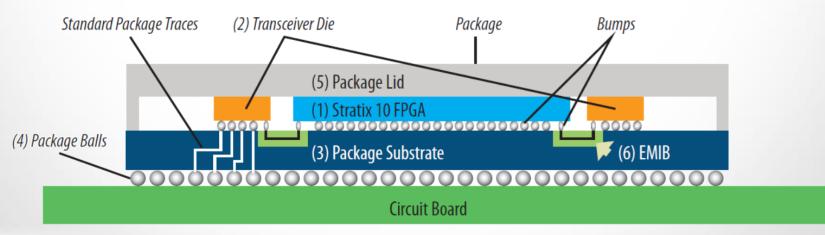
- Hybride CMOS-CCD Technology (by Crooks)
- 2013, 180 nm
- Buried Channel CCD
- 5 Mfps, 700k pixels
- 180 frames
- Fill factor 11%

18

 $\langle \diamond \rangle$

- Specialised-imaging
 - Model Kirana
 - 924 x 768pixel 180 frames
 - 5 Mfps
 - Acquisition rate : 3.5 Tpixel/s
 - 10 bits
 - → 35 Tbit/s

350 modules of the **100 Gbps** fastest commercial **laser** network **connections** should be required to **extract the data** from the sensor in **real time**


19

Wind Tunnel 1

Toward digital ultra high speed video²⁰

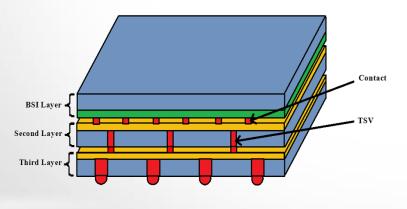
- 2.5D and 3D microelectronic
 - Silicon interposer Or Intel Embedded Multi-Die Interconnect Bridge (EMIB)
 - Ultra high density and short distance interconnect
 - Fast I/O realized by dedicated high speed transceiver Die

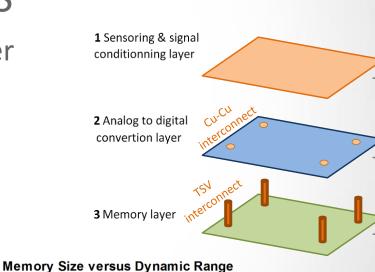


Toward digital ultra high speed video²¹

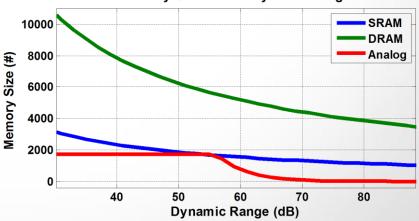
- State of the art
 - I/O interconnect
 - 144 x 30 or 17.4 Gbps
 - →4 Tbps
 - Next generation
 - 56 Gbps or Optical
 - ➔ 8 Tbps
 - High speed RAM interface
 - 10x discrete DRAM
 - 40 Tbps ??

Digital ultra high speed video is no more an unreachable dream

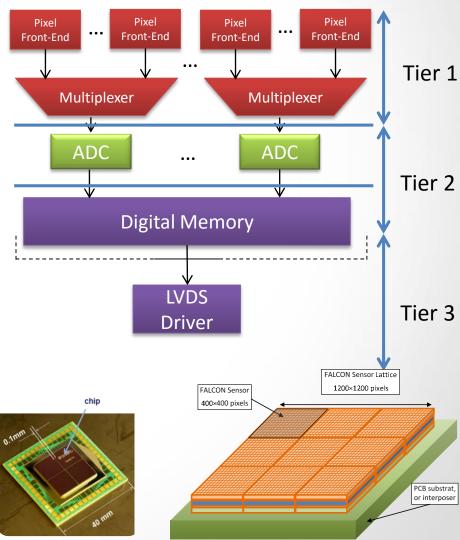




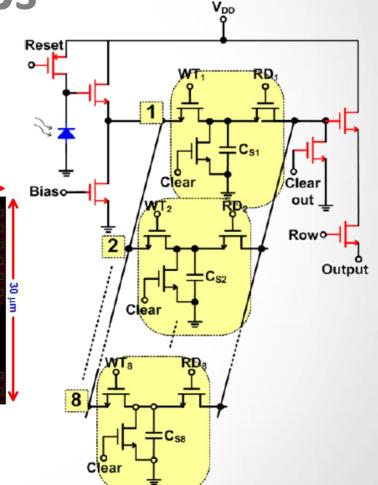
Toward digital ultra high speed video


3D Microelectronic Ultra fast BIS

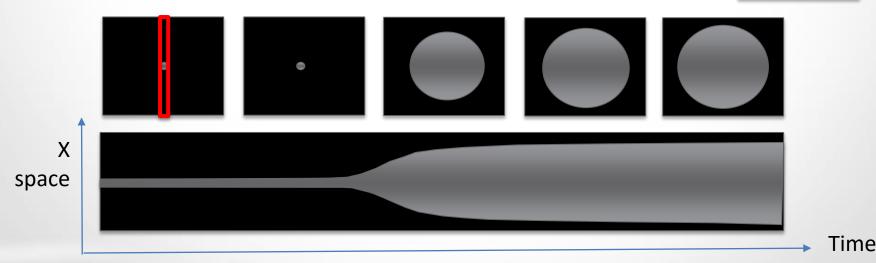
- High sensitivity, low noise, low power and high speed pixels
- High speed, low power and low area ADCs
- High throughput and high density digital memory (28nm)


22

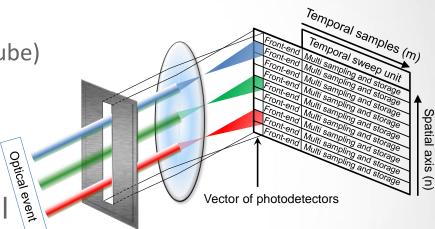
Toward digital ultra high speed video²³

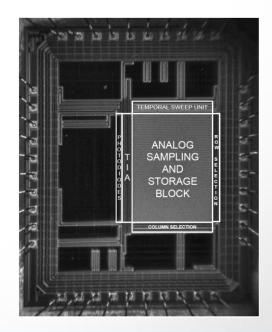

- Main characteristics of the FALCON BIS
 - 10 Millions fps @ full resolution (400x400)
 - Up to **100 million frames** per second (spatial resolution reduction and binning)
 - Real total acquisition rate > 10 Tera bits/s
 - Digital storage and readout
 - High memory depth > 1000 frames
 - Resolution heightening by lattice sensors (multiple of **400x400** pixels pixel pitch 50 μm)
- Architecture
 - Cluster of pixel sharing a ADC
 - Transimpedance amplifier front end
 - 100 Mega Samples per second ADC
 - Group of cluster for memory organization
 But ADC limits the maximal frame rate at
 100Mfps ...

Torward to the GigaFps


- CMOS (by Deen)
 - 2009, 130 nm
 - Up to 1.3 Gfps, 32x32 pixels
 - but
- Only 8 frames
- Fill factor 9 %
- No image
- To much constraints
 - Spatial & temporal resolution
- →release the constraints ...

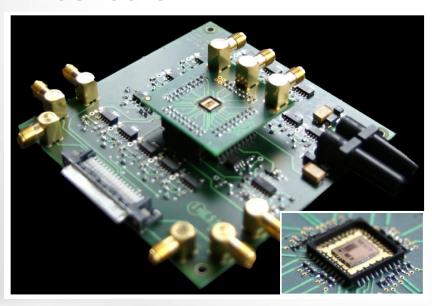
Photodiode 10 μm X 10 μm FF = 9 %

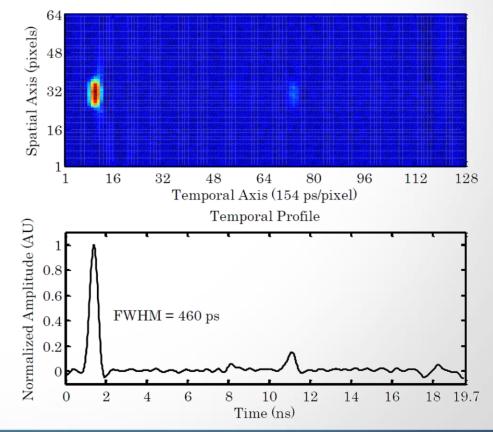

Streak Imaging


- Reducing the spatial resolution increase the frame rate
- Optimal speed obtain for one single column
- → Streak imaging
- About 100 times faster with whatever the technology
 - − Rotating mirror 40 ns Frame → 600 ps Streak
 - − Vacuum tube 200 ps Frame → 2 ps Streak
 - − Solid state 100 ns Frame → 1 ns Streak

Toward to the GigaFps

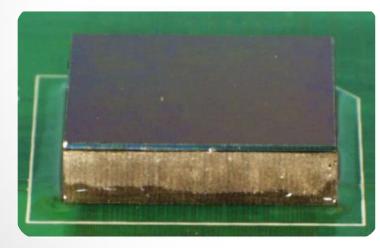
- CMOS Streak imaging(by ICube)
- 2013, 350 nm SiGe BiCMOS
- Release of 2D Imaging contraints
 - Aera limited electronic for pixel pitch
- Up to 8 Gfps, 128 frames
- 64x1 pixels (streak imaging)
- Pixel pitch 32 μm
- Fill factor 84 %
- Touching the physical limit of the technology
 - Single gate propagation time

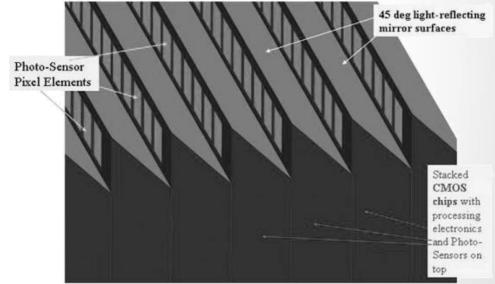




Toward to the GigaFps

- CMOS Streak imaging (by ICube)
 - subnanosecond temporal resolution
- 100x faster than 2D
 Ultrafast image CMOS
 sensors





Torward to the Framing GigaFps

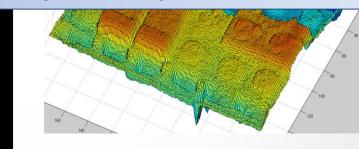
- Streak imaging to frame imaging
- 3D microelectronic
- Assembly of streak camera
 (Proposed by Kleinfelder)

28

- The ultimate solid state video imager
- 10 Gfps, up to 200 frames
- Does not exist for the moment ...

Single shot / repeatable event

All previously described systems are single shot system

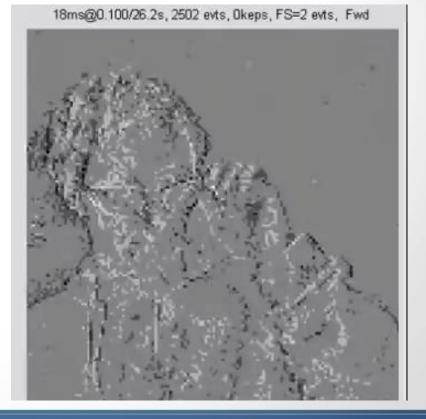

- A **single** event is acquire
- → Require the large data rate
- Many fast events are repeatable
 - Fluorescence, Tomography, LIDAR, Laser induce events ...
 - The phenomenon can be sampled in several time
- → Require much less data rate
- The temporal resolution can be highly increased

SPAD Sensors

10 ps

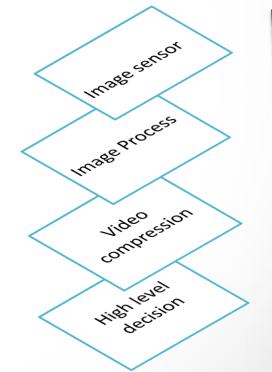
- Able to see the speed of light !
 - 100 ps FWHM laser pulse propagating

Keynote of Claudio Bruschini, EPFL (Switzerland) "Time Correlated Single Photon Counting Sensor" 2:40 pm Today


Wilfried Uhring *Icube, University of Strasbourg and CNRS*

Processing for increase video rate ?

- Low Level Data Processing
 - Remove unusefull information


Keynote of Laurent Fesquet, TIMA (France) "Low-Power Event-driven Image Sensors" 1:45 pm Thursday

Processing for increase video rate ?

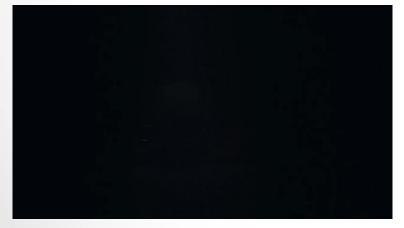
- High Level Data Processing
 - Embedded process
 - Extract only useful information

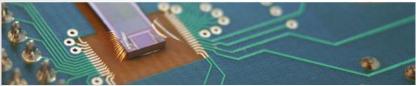
Keynote of Dietmar Fey, University of Elangen-Nürnberg "Image Processing Application for Heteregenous Computing Architecture" 9:15 pm Thursday

Conclusion

- High speed imaging always push the technologies to their limits
 - Rotating mirror, Vaccum Tube and now solid state device

Digital High speed video


- 25 Gpixel/s with monolithic sensor (State of the art)
 - limited by I/O Speed
- Up to 1 Tpixel/s with 3D microelectronic (Near Future)
 - limited by ADC
- Analog High speed video (Burst imaging with 100's frames)
 - CCD technology up to 100 Mega Frame/s
 - Limited by charge transfer process
 - CMOS technology up to 10 G Frame/s in combination with Streak imaging and 3D microelectronic
 - Limited by photodiode and frontend bandwidth (GHz range)
- Solid state ultrafast imaging is young and very promising ...


Contact

Pr. Wilfried Uhring

Strasbourg IHU SMIM (Systems and Microsystems for Medical Instrumentation) Team Leader

Icube SMH (Heterogeneous Systems and Microsystem) team member.

Address: 23 rue du Loess, 67037, Strasbourg Cedex France

Phone: +33 3 88 10 68 27

Email: Wilfried.uhring@unistra.fr