Secure V2X Communications
- According ETSI (Europe) -

Markus Ullmann
Outline

- Secure Vehicle-2-Vehicle Communication (V2V) according to ETSI
 - Communication Model
 - Security - and Privacy Requirements
 - Shortcomings of the existing ETSI Specifications
 - Security, Privacy
- Secure Vehicle-2-Infrastructure Communication (V2X)
 - V2X Pilot Projects in Europe
 - Cooperative Intelligent Transport System (C-ITS) Corridor Project Rotterdam-Frankfurt-Vienna
 - Secure V2X Communication
 - Secure ITS Roadside Station (IRS) messages (DENM)
 - Multi Domain PKI Architecture
- Conclusion/Future Work
Vehicle-2-Vehicle Communication (V2V)

- Aim: Enhance Traffic Safety
Status V2V Communication

- ~ 2005 – 2010: Prototyping
- ~ 2010 – 2015: Standardization
 Europe: ETSI
 US: IEEE, SAE
- 2018/19: Start Deployment Vehicles with V2V interface in Europe
Vehicle-2-Vehicle Communication

- Broadcast Communication
- IEEE 802.11p
- 5,9 GHz ("G5")
Security and Privacy Requirements for the V2V Communication

- Security Requirements
 - Message Integrity
 - Message Authenticity

- (Location) Privacy
 - Sender Anonymity
 - Message Unlinkability (~ “over longer time periods“)
ETSI ITS Architecture

- ITS roadside stations
- ITS vehicle stations
- ITS central stations
- ITS personal stations
Secure Vehicle-2-Vehicle Communication

- **ETSI ITS Specifications**
 - **TS 102 637-2 V 1.2.1**: Cooperative Awareness Message (CAM): Location, Speed, Time, ... Send Frequency: 100ms
 - Header | CAM Information | ECDSA Signature | Certificate
 - **TS 102 637-3 V 1.1.1**: Decentralized Environmental Notification Basis Services (DENM): Warning
 - Header | DENM Information | ECDSA Signature | Certificate
 - **TS 103 097 V 1.1.1**: Security header and Certificate formats
ECDSA

- Elliptic Curve Digital Signature Algorithm (ECDSA)
- Digital Signature is a “Cryptographic Fingerprint“
- In general: Use of Asymmetric Cryptography
 - Here: Elliptic Curve Cryptography (ECC)
- Entities need:
 - Key Pair: (public key | private key)
 - Certificate (formal attestation of a key pair)
- Sender: Calculates signature (ECDSA)
- Receiver: Verifies signature (ECDSA)

Elliptic Curves Cryptography
- Calculation in specific cyclic finite groups (Discret Logarithm Problem on ECC is hard)
- Elliptic Curve Domain Parameter (according to NIST, Brainpool, …)
 - NIST P-256 (NSA/NIST does not recommend to use this curve any longer)
 - BrainpoolP256r1
 - ...

Tutorial InfoWare: Secure V2X November 13, 2016 Folie 9
Cooperative Awareness Message (CAM)
- "~ Beacon Message" -

CAM Send Frequency: 10 Hz

<table>
<thead>
<tr>
<th>Complete Message</th>
<th>Header</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signer Info</td>
</tr>
<tr>
<td></td>
<td>Generation Time</td>
</tr>
<tr>
<td></td>
<td>its_aid ITS-AID for CAM</td>
</tr>
<tr>
<td></td>
<td>Basis Container</td>
</tr>
<tr>
<td></td>
<td>ITS-Station Type</td>
</tr>
<tr>
<td></td>
<td>Last Geographic Position</td>
</tr>
<tr>
<td></td>
<td>Speed</td>
</tr>
<tr>
<td></td>
<td>Driving Direction</td>
</tr>
<tr>
<td></td>
<td>Longitudinal Acceleration</td>
</tr>
<tr>
<td></td>
<td>Curvature</td>
</tr>
<tr>
<td></td>
<td>Vehicle Length</td>
</tr>
<tr>
<td></td>
<td>Vehicle Width</td>
</tr>
<tr>
<td></td>
<td>Steering Angle</td>
</tr>
<tr>
<td></td>
<td>Lane Number</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>High Frequency Container</td>
</tr>
<tr>
<td></td>
<td>Vehicle Role</td>
</tr>
<tr>
<td></td>
<td>Lights</td>
</tr>
<tr>
<td></td>
<td>Trajectory</td>
</tr>
<tr>
<td></td>
<td>Emergency</td>
</tr>
<tr>
<td></td>
<td>Police</td>
</tr>
<tr>
<td></td>
<td>Fire Service</td>
</tr>
<tr>
<td></td>
<td>Road Works</td>
</tr>
<tr>
<td></td>
<td>Dangerous Goods</td>
</tr>
<tr>
<td></td>
<td>Safety Car</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>Special Container</td>
</tr>
<tr>
<td></td>
<td>Signature</td>
</tr>
<tr>
<td></td>
<td>ECDSA Signature of this Message</td>
</tr>
<tr>
<td></td>
<td>Certificate</td>
</tr>
<tr>
<td></td>
<td>According Certificate for Signature Verification</td>
</tr>
</tbody>
</table>
Privacy: Pseudonym Concept

- **Concept**
 - Pseudonymous key pairs / certificates

- **Privacy Requirements**
 - Sender Anonymity
 - Message unlinkability

Privacy Requirements
- Sender Anonymity
- Message unlinkability

Time
- \(t = t_0 \)
- \(t = t_1 \)
CAM Data Volume

- **Basis Container + High Frequency Container + Low Frequency Container:** \(~200\) bits
- **Header + Signature:** \(~750\) bits
- **Certificate:** \(~1000\) bits

<table>
<thead>
<tr>
<th>Complete Message</th>
<th>Header</th>
<th>CAM Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Basis Container</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ITS-Station Type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last Geographic Position</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Driving Direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Longitudinal Acceleration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Curvature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vehicle Length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vehicle Width</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steering Angle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lane Number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Frequency Container</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vehicle Role</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lights</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trajectory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emergency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Police</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fire Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Works</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dangerous Goods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Safety Car</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Frequency Container</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Special Container</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECDSA Signature of this Message</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Certificate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>According Certificate for Signature Verification</td>
</tr>
</tbody>
</table>
Decentralized Environmental Notification

Basis Services (DENM)

- **Warning (event driven)** -

<table>
<thead>
<tr>
<th>Complete Message</th>
<th>Header</th>
<th>Management Container</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signer_INFO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generation_Time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>its_aid ITS-AID for DENM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Last Vehicle Position (GPS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Event Identifier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time of Detection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time of Message Transmission</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Event Position (GPS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Validity Period</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Station Type (Motor Cycle, Vehicle, Truck)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Message Update / Removal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relevant Local Message Area (geographic)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Traffic Direction (forward, backwards, both)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transmission Interval</td>
<td></td>
</tr>
</tbody>
</table>

	Information Quality (low - high, tbd)	
	Event Type (Number)	
	Linked Events	
	Event Route (geographical)	
	Event Path	
	Event Speed	
	Event Direction	
	Road Type	
	Road Works (Speed Limit, Lane Blockage …)	

| A la carte Container | Road Works (Speed Limit, Lane Blockage …) | |

<table>
<thead>
<tr>
<th>Signature</th>
<th>ECDSA Signature of this message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate</td>
<td>According Certificate for Signature Verification</td>
</tr>
</tbody>
</table>
Comparison V2X in Europe / US

<table>
<thead>
<tr>
<th></th>
<th>Europe</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards:</td>
<td>ETSI 102637 1-3</td>
<td>SAE J 2735</td>
</tr>
<tr>
<td></td>
<td>ETSI 102 943</td>
<td>IEEE 1609.2</td>
</tr>
<tr>
<td></td>
<td>ETSI 103 097 (Naming derived from IEE 1609.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>further ETSI standards possible</td>
<td></td>
</tr>
<tr>
<td>Accepted ECC Curves:</td>
<td>NIST P-256r1</td>
<td>NIST P-256r1</td>
</tr>
<tr>
<td></td>
<td>BrainpoolP256r1 (in discussion)</td>
<td>BrainpoolP256r1 (in discussion)</td>
</tr>
<tr>
<td>Message Types:</td>
<td>CAM</td>
<td>BSM</td>
</tr>
<tr>
<td></td>
<td>DENM</td>
<td>RSA</td>
</tr>
<tr>
<td></td>
<td>EVA</td>
<td>EVA</td>
</tr>
<tr>
<td></td>
<td>“unlimited” number of types possible</td>
<td>limited number of types</td>
</tr>
<tr>
<td>Minimal Message Size without Signature and Certificate:</td>
<td>186 bit</td>
<td>275 bit</td>
</tr>
<tr>
<td>Minimal Message Size with Signature and Certificate:</td>
<td>~2 Kbit</td>
<td>~2 Kbit</td>
</tr>
</tbody>
</table>
Secure Vehicular Communication
- Keys, Certificates, PKI

- Identification and Authentication of Vehicles
 - Long term cryptographic key pair (certificate) based on Elliptic Curves (NIST P-256)
 - ETSI Certificate format (not widely used)
 - Issued by Long Term Certification Authority (LTCA)
 [ETSI]: Enrolement CA

- Message Security / Location Privacy
 - Pseudonymous key pairs (certificates) (ECC NIST P-256)
 - ETSI Certificate Format
 - Issued by Pseudonym Certification Authority (PCA)
 [ETSI]: Authorization CA
Secure Vehicular Communication
- Key Generation, Key Storage -

- Private keys are generated at random (within the order of the ECC group)
 - Long term -, pseudonymous keys are distinct
 - No key duplicates
- Typically secret keys will be generated and stored within secure elements in the vehicle
Outline

- Secure Vehicle-2-Vehicle Communication (V2V) according to ETSI
 - Communication Model
 - Security - and Privacy Requirements
 - Shortcomings of the existing ETSI Specifications
 - Security, Privacy
- Secure Vehicle-2-Infrastructure Communication (V2X)
 - V2X Pilot Projects in Europe
 - Cooperative Intelligent Transport System (C-ITS) Corridor Project Rotterdam-Frankfurt-Vienna
 - Secure V2X Communication
 - Secure ITS Roadside Station (IRS) messages (DENM)
 - Multi Domain PKI Architecture
- Conclusion/Future Work
Shortcomings of the ETSI specifications

- **Cryptographic Setting**
 - Cryptography *ages over time* (e.g., due to better computer attack capabilities)
 - Missing mechanism for *cryptographic update* (crypto agility)
 - Elliptic Curve Domain Parameter
 - Hash Function, Signature Algorithms, ...

- **Adapations**
 - Crypto agility concept is needed
Linkability of CAMs (BSMs)

- **Static Information**
 - Certificate
 - Length/Width
 - Confidence Level
 - (Geographic position)

- **Linkability based on the Pseudonym Certificate**

- **Linkability based on CAM data**
 - Length / Width
 - Confidence Level
 - (Geographic position)

CAM Information

<table>
<thead>
<tr>
<th>Complete Message</th>
<th>Header</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signer Info</td>
</tr>
<tr>
<td></td>
<td>Generation Time</td>
</tr>
<tr>
<td></td>
<td>its_aid ITS-AID for CAM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAM Information</th>
<th>Basis Container</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ITS-Station Type</td>
</tr>
<tr>
<td></td>
<td>Last Geographic Position</td>
</tr>
<tr>
<td></td>
<td>Speed</td>
</tr>
<tr>
<td></td>
<td>Driving Direction</td>
</tr>
<tr>
<td></td>
<td>Longitudinal Acceleration</td>
</tr>
<tr>
<td></td>
<td>Curvature</td>
</tr>
<tr>
<td></td>
<td>Vehicle Length</td>
</tr>
<tr>
<td></td>
<td>Vehicle Width</td>
</tr>
<tr>
<td></td>
<td>Steering Angle</td>
</tr>
<tr>
<td></td>
<td>Lane Number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAM Information</th>
<th>Low Frequency Container</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vehicle Role</td>
</tr>
<tr>
<td></td>
<td>Lights</td>
</tr>
<tr>
<td></td>
<td>Trajectory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAM Information</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Emergency</td>
</tr>
<tr>
<td></td>
<td>Police</td>
</tr>
<tr>
<td></td>
<td>Fire Service</td>
</tr>
<tr>
<td></td>
<td>Road Works</td>
</tr>
<tr>
<td></td>
<td>Dangerous Goods</td>
</tr>
<tr>
<td></td>
<td>Safety Car</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAM Information</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECDSA Signature of this Message</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAM Information</th>
<th>Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>According Certificate for Signature Verification</td>
</tr>
</tbody>
</table>
CAM: Static Informations

- Vehicle Length (CAM: in 10 cm intervals)
- Vehicle Width (CAM: in 10 cm intervals)
- High Frequency Container: Confidence Level

<table>
<thead>
<tr>
<th></th>
<th>Value Range</th>
<th>Confidence Level Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heading</td>
<td>0, ..., 3601 (12 bit)</td>
<td>1, ..., 127 (7 bit)</td>
</tr>
<tr>
<td>Speed</td>
<td>0, ..., 16383 (14 bit)</td>
<td>1, ..., 127 (7 bit)</td>
</tr>
<tr>
<td>Acceleration</td>
<td>00000000, ..., 11111111 (7 bit)</td>
<td>0, ..., 102 (7 bit)</td>
</tr>
<tr>
<td>Curvature</td>
<td>-30000, ..., 30000 (16 bit)</td>
<td>0, ..., 7 (3 bit)</td>
</tr>
<tr>
<td>Yaw Rate</td>
<td>-32766, ..., 32767 (16 bit)</td>
<td>0, ..., 9 (4 bit)</td>
</tr>
</tbody>
</table>
Movement of the Geographic Position

Assumptions:
- Speed: 50 km / h
- CAM transmission frequency: 10 Hz

- Secondary vehicular identities: e.g., Bluetooth Device Address (48 bit), ...
- C-ITS Platform EC DG
 Move: „CAM / DENM: personal data“

Assumptions:
- Speed: 50 km / h
- CAM transmission frequency: 10 Hz

Diagram:
- Movement of geographic position over time
- Assumption:
 - Speed: 50 km / h
 - CAM transmission frequency: 10 Hz

Summary:
- Movement of geographic position
- Assumptions for simulation
- C-ITS Platform EC DG Move: „CAM / DENM: personal data“
Location Privacy
- Attacker Models -

- „Big Brother“ Attacker
 - Monitoring traffic in a specific region
 - Static: e.g., roadside stations
 - Dynamic: class of vehicles (e.g., trucks)

- Local Attacker
 - Monitoring specific vehicle (driver)
Shortcomings of the Pseudonym Concept

Observation Device: e.g., Future Smart Phone

- IEEE 802.12 Interface (5G)
- Storage
- Prozessor
- GPS
- LTE

- Observation Device:
 - Stores „CAM Trace“ (location, time, speed, …)
 - Non-disputable observation

Due to the (ECDSA) Signature
Link a “CAM Trace“ to a Vehicle

Observation Device: e.g., Future Smart Phone
- IEEE 802.12 Interface (5G)
- Storage
- Prozessor
- GPS
- LTE
- WLAN/Bluetooth

- If one CAM of the whole “CAM Trace“ can be linked to a vehicle then the whole CAM Trace can be linked
- Linkability
 - Limited Vehicles with V2V Interface
 - Based on Second Level Vehicle Identifier
 - ...
Vehicle Identifier (1)

- First Level Identifier (formal/official)
 - Vehicle Identification Number (VIN)
- Licence plate
- Enrollement certificate (long term)
Vehicle Identifier (2)

- Second Level Identifier (arise with wireless vehicle communication interfaces)
 - Vehicular multimedia device:
 - 48 bit static Bluetooth MAC ID (24 bit manufacturer || 24 bit bluetooth device)
 - "User-friendly-name"
 - WiFi access point:
 - WLAN MAC ID
 - Service Set Identifier (SSID)
 - Active Tyre Pressure Monitoring System (TPMS):
 - RFID-ID
 - Mobile:
 - IMEI
Individual Driver Identification

- Do humans have individual driveability properties?
- Are driveability properties deducible from send CAM data?

Open Research Issues
- Driver identification based on a small driver set (1 : N)?
- Driveability Features?
- Matching Algorithm?
- …
Outline

- Secure Vehicle-2-Vehicle Communication (V2V) according to ETSI
 - Communication Model
 - Security - and Privacy Requirements
 - Shortcomings of the existing ETSI Specifications
 - Security, Privacy
- Secure Vehicle-2-Infrastructure Communication (V2X)
 - V2X Pilot Projects in Europe
 - Cooperative Intelligent Transport System (C-ITS) Corridor Project Rotterdam-Frankfurt-Vienna
 - Secure V2X Communication
 - Secure ITS Roadside Station (IRS) messages (DENM)
 - Multi Domain PKI Architecture
- Conclusion/Future Work
C-ITS Corridor Project
- Secure Vehicle-2-Infrastructure Communication

Attention: Short Term Site

Motorway Corridor
C-ITS Corridor Project
- Secure V2X Communication -

- Cooperative ITS Corridor Project Rotterdam-Frankfurt-Vienna (NL-G-AU)

- Joint Project of:
 - Austria: Federal Ministry of Transport, Innovation and Technology
 - Netherlands: Ministry of Infrastructure and the Environment
 - Germany: Federal Ministry of Transport and Digital Infrastructure

- Digitalization of Road Works Warning

- Use Cases (Broadcast Communication)
 - Send DENM messages to the crossing vehicles
 - Receive CAM / DENM messages of crossing vehicles

IEEE 802.11p

 arrows pointing from roadside to vehicles and vice versa.
Further V2X Pilot Projects in Europe

- France: Scoop@F

- Danmark, Finland, Norway, Sweden: NordicWay
Secure ITS Roadside Stations (1)
- Integration of an electronic gateway
- Threats to incoming/outgoing messages
 - Availability
 - Jamming, ...
 - Authenticity
 - Masquerading, ...
 - Integrity
 - Injection of forged messages, ...
 - Confidentiality
 - Extraction of sensitive information (e.g., cryptographic keys)
- Threats concerning the integrity of the electronic gateway itself
 - Malicious software
 - Extraction of cryptographic keys, ...
Secure ITS Roadside Stations (2)

- Location Privacy
 - ITS roadside stations are not controlled by a user
 - No Privacy Requirements ==> no pseudonym certificates are needed
 - Instead: Credential Certificate (short validity period [~ days] to avoid CRLs)

- Security Requirements
 - DENM-Security: Message integrity and authentication
 - „Protection of the gateways“ → Protection Profile (PP)
 - Identification and authentication (roles)
 - Access Control, …
 - Short time authorization (credential certificate)
 - ...

C-ITS Use Case: Sending DENM messages

- **Short Term Credential Certificate**

- **Usage**
 - Authorization of ITS roadside station
 - Message integrity and authentication of DENM messages

- **ETSI Certificate format**

DENM Information

- **Header**
 - Signer Info
 - Generation Time
 - its aid ITS-AID for DENM

- **Management Container**
 - Last Vehicle Position (GPS)
 - Event Identifier
 - Time of Detection
 - Time of Message Transmission
 - Event Position (GPS)
 - Event Position (GPS)
 - Validity Period
 - Station Type (Motor Cycle, Vehicle, Truck)
 - Message Update / Removal
 - Relevant Local Message Area (geographic)
 - Traffic Direction (forward, backwards, both)
 - Transmission Interval

- **DENM Information**
 - Event Type (Number)
 - Linked Events
 - Event Route (geographical)

- **Situation Container**
 - Information Quality (low - high, tbd)

- **Location Container**
 - Event Path
 - Event Speed
 - Event Direction
 - Road Type

- **A la carte Container**
 - Road Works (Speed Limit, Lane Blockage…)

- **Signature**
 - ECDSA Signature of this message

- **Certificate**
 - According Certificate for Signature Verification
IRS PKI Domain (Infrastructure)

- Identification and Authentication of ITS Roadside station
 - Long term key pair (certificate) based on Elliptic Curves
 - BrainpoolP256r1 curve
 - X.509 V3 certificate format
 - Issued by Long Term Certification Authority (LT-CA)
 [ETSI: Enrolement CA]

- Authorization and Message Authentication
 - Short term key pair (credential certificate) based on Elliptic Curves
 - BrainpoolP256r1 curve
 - ETSI Certificate format
 - Issued by Credential Certification Authority (C-CA)
 [ETSI: Authorization CA]
Certificate Shell Model

LT-RCA

LT-CA

0 I II

time

IRS-LT-RCA
IRS-C-RCA

LT(cert)
C(cert)
CRL

LT(cert) revoked?

Tutorial InfoWare: Secure V2X November 13, 2016 Folie 37
Crypto Agility

- Adaptation of Cryptographic Parameters
 - Key Length → ECC Domain Parameter
 - Crypto Algorithms
 - ...

- Performed by a IRS-LT-RCA link certificate (signed with the previous root key)
Multi Domain PKI Architecture

- Trust Relation
 - Local Trust Lists (LTL)
- Benefits
 - Flexibility (Requirements)
 - RSU under control of infrastructure authority
- Drawback
 - Managing of LTLs within each PKI
Outline

- Secure Vehicle-2-Vehicle Communication (V2V) according to ETSI
 - Communication Model
 - Security - and Privacy Requirements
 - Shortcomings of the existing ETSI Specifications
 - Security, Privacy
- Secure Vehicle-2-Infrastructure Communication (V2X)
 - V2X Pilot Projects in Europe
 - Cooperative Intelligent Transport System (C-ITS) Corridor Project Rotterdam-Frankfurt-Vienna
 - Secure V2X Communication
 - Secure ITS Roadside Station (IRS) messages (DENM)
 - Multi Domain PKI Architecture
- Conclusion/Future Work
Conclusion V2X

- Next steps C-ITS Corridor Project (2016)
 - Setup PKI for ITS roadside stations (RWWG)
 - Equip RWW gateway stations with keys/certificates
 - Test secure Vehicle-2-X communication with real vehicles within the C-ITS corridor
 - ...

- Secure V2X Communication
 - Security Concept for ITS Roadside stations and V2X is sound

- C-ITS Platform (EC DG MOVE): Common C-ITS PKI Policy in preparation for Europe
Thanks for listening?

Kontakt

Prof. Dipl.-Ing. Markus Ullmann
Federal Office for Information Security (BSI)
Head of Unit “Secure Identification and Hardware Security“
Godesberger Allee 185-189
D-53175 Bonn, Germany

Tel: ++49(0)22899-9582-5268

markus.ullmann@bsi.bund.de
www.bsi.bund.de

Professor Bonn-Rhine-Sieg University of Applied Sciences