IP 2020

Towards Next Generation Internet for 5G, IoT, and Immersive Experience

Burjiz Pithawala VP/CTO, Future Networks

burjiz.pithawala@huawei.com

www.huawei.com

August 2016

HUAWEI TECHNOLOGIES CO., LTD.

Agenda

- Introduction (Trends for IP2020)
- Ubiquitous Mobility
- ID-Oriented Networking
- New Transport
- Self-X Networking
- Security and Trustworthy Network
- Concluding Remarks

Predicting Future

- Lot of vision and imagination
- Jules Verne, 1863, applied observation and science to predicting the next century in his article "Paris in the Twentieth Century".
- His prediction for Paris in 1960 for gasoline powered cars, TV, elevators, air conditioning, fax machines, high speed trains ...
- In 1865, he detailed a mission to moon in an article "From Earth to Moon". This resembled the eventual mission in 1969.
- He was not a scientist, but interviewed scientist about their thinking and research extensively.

Predicting Future

Near Future (Present – 2030)

- Internet Glasses, Contact Lens
- > DriverLess Cars, Four Wall Screens, Flexible Electronic Paper
- Virtual Worlds
- Medical Advances a different healthcare system

Mid Century (2030 – 2070)

- End of Moore's Law
- > AR/VR in tourism, art, shopping, warfare and not just games
- Universal Translators, Holograms, 3D

Far Future (2070 – 2100)

- > Mind Over Matter Mind Reading, Photographing a Dream, Tricoders
- Climate Control by Humans, Telekinesis Power of Gods

Source – Physics of the Future – Michi Kaku

Page4

Towards 2020: Landmarks in the Internet

HUAWEI TECHNOLOGIES Co., Ltd.

HUAWEI CONFIDENTIAL

Mobile v/s Fixed

- More than half a billion (563 million) mobile devices and connections were added in 2015
- By 2020 there will be 1.5 mobile devices per capita. There will be 11.6 billion mobile-connected devices by 2020, including M2M modules—exceeding the world's projected population at that time (7.8 billion).

Figure 2. Cisco Forecasts 30.6 Exabytes per Month of Mobile Data Traffic by 2020

- Global mobile data traffic grew 74 percent in 2015
- Mobile video traffic accounted for 55 percent of total mobile data traffic in 2015
- Three-fourths of the world's mobile data traffic will be streaming video by 2020

Page6

5G Use Cases in the Year 2020 and Beyond

HUAWEI TECHNOLOGIES Co., Ltd.

HUAWEI CONFIDENTIAL

5G - Redefining Mobility in Future Networks

Various Sources for Data: Huawei – 5G: A technology Vision & 3GPP

Internet - Today

Internet developed for static (nonmobile usecase)

 3GPP usecase for Mobile IP does not provide session continuity at low cost. Lots of replication and session re-establishment

Full of Overlays

> DC, Enterprise, VPN

Lots of Configs and High OPEX

- Still in the Era of CLI
- DataModels thru NetConf/YANG/REST making a dent

Scaling is major issue in Data Centers

- SP Oversubscription model does not work
- Need no congestion CLOS networks
- Most Routing/Switching protocols not built for CLOS with massive scale (links)

■ Latency – Avg RTT ~ 50msec

TCP is main transport

- Prohibits mobility (IP address change)
- Limits useable bandwidth due to congestion algos

Internet - 2020

Massive Scale

- DataCenter scale with Links and CLOS
- IoT scale with sensors

Mobility First

- Assume everything that connects to Internet is mobile by 2020
- Concept of mobility needs to be inbuilt

Big Bandwidth To the User

- Today avg user BW < 10GB/month</p>
- AR/VR would need >5Gbps
- ➢ 4K/8K would need >2G

Low Latency

 From avg 50 ms RTT to <1ms Latency for sensitive apps

Autonomic/Self X

- Today CLI Config to Auto Config Device to Controller to YANG/REST – transition in place
- Network Machine Learning for Context, Control, Routing [advances in Streaming Data, Analytics and Network learning algos needed]

Context Aware

- Not just IP aware. Need context thru ID
- Move away from Host Centric to Context Centrixc information delivery

Secure By Default

Networking as a Pillar to New Experiences in 2020

What IP 2020 Delivers?

HUAWEI TECHNOLOGIES Co., Ltd.

HUAWEI CONFIDENTIAL

Agenda

- Introduction
- Ubiquitous Mobility
- ID-Oriented Networking
- New Transport
- Self-X Networking
- Security and Trustworthy Network
- Concluding Remarks

Mobility in Traditional IP Networks

IP Mobility must support session continuity all through

Currently for IP Mobility 2 solutions exist

A. Session Preservation via Home Agent Solution

- Home agent communicates with the other end and relays traffic to this end.
- Causes traffic detours through the Home Agent
- Added latency degrades user experience
- Deployment of HA drives OpEX higher

B. Session Preservation via IP Redistribution Solution

- Update FIB for the entire network to announce new next hop of device IP that moved.
- Optimal Routing but results in FIB expansion
- Leads to scalability and slow convergence in the network

Challenge: None of the IP Mobility approaches satisfies 5G scale and applications requirements

Mobility in EPC and Distributed Mobility Management

DMM: old sessions still go through old gateways, and new sessions go through new gateways

- □ Centralized Anchor: EPC works as a centralized mobility anchor, which causes traffic detour and thus the traffic latency is longer.
- DMM: It improves traffic latency for new sessions, but does not help old sessions, since old sessions still go through old gateways.
- **Unnecessary Mobility:** Applications without need of session continuity still go to the mobility management process

ID Plays a Central Role in Mobility

- No Detour to EPC Anchor: Thus End-to-End latency is minimized and the user will have a better experience.
- Mobility is independent of the access network type and there is no need for mobility gateways or agents.

Ubiquitous Connectivity == Session Continuity in Motion

Suboptimal Triangular Routing

- A session is kept <u>live with</u> <u>old location</u>.
- New session is created to re-send data to new location

 <u>IP Address changes</u> when access changes causing service disruption

- Even in same access, for example LTE, PGW to PGW, GTP <u>Tunnel is re-</u> <u>established</u>
- Session is not preserved.

Ltd. HUAWEI CONFIDENTIAL

State Of the Art - Standardized solutions

SDO	Solution	Methodology	Advantages	Limitations	Market Proven
IETF	Mobile IPv4	Home Agents, Home Address, Care-of addresses	Use of IPv4, retain same ip address	Handover latency, signaling overheads in transition, suboptimal triangular routing, Limited QOS	
IETF	MIP V6	Address Autoconfig, autodiscovery of neighbors, Care-of-Addresses use of ipv6 hdr options for destination options	Always On Use of IPv6 Session persistence	Handoff latency, Limited awareness of heterogeneity, requires kernel changes, Security issues	
3GPP	3G/GTP	Tunnels through eNB, S-GW and P-GW	Fast handoff	Tunnel re-creation on move, no session continuity.	Yes
3GPP	4G/LTE/GTP	Tunnels through eNB, S-GW and P-GW	Fast handoff	Tunnel re-creation on move. Service continuity is limited within a P-GW	Yes
IETF	Proxy Mobile IPv6 (PMIPv6)	Mobile Access Gateway (MAG) and Location Mobility Anchor (LMA)	Fast handoff retain same ip address	Session continuity limited to local administrative domain, centralized LMA may not scale well.	Yes
IETF	Distributed Mobility Management (DMM)	Mobility anchors, partial session distribution	Fast handoff	Triangular routing only for on-going sessions same as Mobile IP. Optimized for new sessions only. No RFC yet	
IETF	LISP	ID separation from location. Both ID and locator are IP address based	Use of ID over IP	Under Research	waiting for multi- vendor adoption.

Agenda

- Introduction
- Ubiquitous Mobility
- ID-Oriented Networking
- New Transport
- Self-X Networking
- Security and Trustworthy Network
- Concluding Remarks

ID-Oriented Networking Protocol Stack

Current IP: Two Meanings of IP Addresses

- 1) Identity: What it is (Identity)
- 2) Location: Where it is (Location)

- ID for universal mobility and global reachability
- Locator for routing: address aggregation and longest prefix matching
- ID can represent user, host, content, and virtual network
- Locator varies from a place to another while ID keeps unchanged

Splitting Network Plane into Two Layers: IP and ID

ID Oriented Networks : Application Model

Enables Everything through an ID Aware Model

ION Sockets

- Applications connect with ID based sockets
- IP layer locates source and destination ID accurately and sets up path

1. Point to Point

2. P2MP & MP2MP

Easier To Manage Communication Relationships with IDs

- 1. Point to Point
 - **Single ID For Multiple Applications**
 - **Cross-application Channels**
- **Group Communication with ID** 2.
 - Both P2MP and MP2MP
 - Same as (1)
- 3. Support Active/Passive Comm.
 - Synchronous when ID is online
 - Asynchronous when offline.

Unified ID Space

- All apps get same unique ID ('who is').
- ID Mapping system ensures ID is unique and globally accessible

ID Unlocks New Opportunities Beyond Mobility

Delivers Better Service Experience

- Optimal traffic path selection
- No detours to mobility anchor point
 Simplified Network Operations
 - Unified ID plane for any fixed and mobile access
- ID Agnostic Stable Core
 - FIB remains locator based
 - As user moves, no route change triggers

Benefits and Opportunities from Layer 3.5

□ L3.5 Communication

- P2P Communications without servers
- Cross-silo communication possible
- ID based Group-communication (PIM free)
- □ Accelerated applications deployment over L3.5
 - Network/Topology change agnostic
 - Focus on business logic not network
- □ Refined L3.5 Edges
 - Fine grained ID aware TE, Policy, LBs
 - ID based End to End Security

ID-Oriented Networking: Summary

Simpler Mobility Management

Without Mobility Anchor E.G. EPC Or Home Agent

Uniform Interconnection Of Everything –

IoT, Hosts, Contents & Users

New Business Opportunities

With Accelerated Application Development

Backward Compatibility

For Applications Based On IP Sockets With Marginal Changes

Research Areas :

- ID Sockets
- Security Policies for ID Networks
- Global ID Mapping System
- Group/Multicast ID definition and distribution
- ➢ ID based ICN

Agenda

- Introduction
- Ubiquitous Mobility
- ID-Oriented Networking
- New Transport
- Self-X Networking
- Security and Trustworthy Network
- Concluding Remarks

Recent Transport Trends – Immersive Experience

VR User Experience Challenges

- Frame Latency Decouples from virtual world
- Causes disorientation

HUAWEI TECHNOLOGIES Co., Ltd.

HUAWEI Source: http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/

Available bandwidth is not used well

Bitrate for a video format

HUAWEI CONFIDENTIAL

HUAWEI TECHNOLOGIES Co., Ltd.

Why the Application Throughput Matters? It's all about User Experience!

Bandwidth requirement	SD	HD	FHD	Quasi 4K	Basic 4K	Ultra 4K	Quasi-8K	Basic 8K	Ultra 8K	Quasi VR	Basic VR	Ultra VR
Resolution	640*480	960*720	1920*1080		3840*2160			7680*4320		4K*3 (2K*2K*2)	10K*3 (5K*5K*2)	32K*3 (16K*16K*2)
Frame rate	25/30	25/30	25/30	25/30	50/60	100/120	25/30	50/60	100/120	50/60	100/120	100/120
Color depth	8	8	8	8	10	12	10	12	14	10	14	14
Sampling/ Compression	YUV 4:2:0 & H.264			YUV 4:2:0 & H.265/HEVC								
Minimum bit rate (M bit/s)	2	4	8	15	30	50	50	100	220	68	773	7920
Minimum bandwidth (*1.5,	3	6	12	23	45	75	75	150	330	101	1160	11880
<u>M Bits/S)</u> Delay(ms)	100	100	100	50	50	40	40	25	25	20	15	15
Packet loss ratio	1.0E-03	1.0E-04	1.0E-04	1.0E-05	1.0E-05	1.0E-05	1.0E-05	1.0E-05	1.0E-06	1.0E-05	1.0E-06	1.0E-08

State Of the Art - Standardized solutions

Solution	Methodology	Advantages	Limitations	Market
TCP	End to end byte-based transport, Congestion window control 3-step connection setup	Reliable, in-order delivery	 Line header block Poor real-time ability Difficult multi-homing implementation Vulnerable to denial of service (DOS) attacks (SYN flood) 	All over
SCTP	Stream-based Reliability Supports ordered un- ordered	 Selective acknowledgement Eliminates head of line blocking Reduces DOS due to 4-way connection (cookie) Congestion avoidance via fast retransmission. Multihoming thru heartbeat 	 Requires App changes No load sharing 	SS7, NAS signaling on LTE
MPTCP	Multiple path using TCP options	 No app changes Resilience through usage of alternative path Can do load sharing 	Scale issues for high number of multiple connections	Mobile devices
QUIC	Session Establishment, Flow Control Error Correction, Congestion Control	Fast connection setup	Is mainly used in single browser environment.	Yes

Transmission Media Aware Transport Efficiency

Potential Research ideas of new transport

Transport layer based on measurement

Multi-stream transport

HUAWEI TECHNOLOGIES Co., Ltd. HUAWE

HUAWEI CONFIDENTIAL

Agenda

- Introduction
- Ubiquitous Mobility
- ID-Oriented Networking
- New Transport
- Self-X Networking
- Security and Trustworthy Network
- Concluding Remarks

Why Intelligent Networking?

Conventional routing protocols were not designed for such diverse eco-systems

Self-Organization and Automation Issues in Enterprise and IoT Networks

- Minimize Human Intervention in Network Design & Operations
- Address Massive Scale And Variations, Environmental Constraints

Self-X Network for Intelligent Edge

HUAWEI TECHNOLOGIES Co., Ltd. HUA

HUAWEI CONFIDENTIAL

State of Network

Today

Auto-Discovery/Registration

Proprietary, DNS, MsgBus

Auto Config

- DHCP, NetConf/YANG at Device Level
- NetConf/YANG/REST Network Model

Self Healing Devices/Networks

- Routing Protocols self healing
- Fault Detection Needs work
- Fault Isolation Network Policy settings

Autonomic Networks

- Defined in IETF
- Deployment Infancy

2020

- Autonomic IoT Networks
 - At massive scale

Network Analytics

- Day Zero Analytics
- New Security traffic anomaly detection
- Network Machine Learning for SelfX networks
- SDN/Controller Based Network Level config
 - Performance Routing
 - > PCEP

Agenda

- Introduction
- Ubiquitous Mobility
- ID-Oriented Networking
- New Transport
- Self-X Networking
- Security and Trustworthy Network
- Concluding Remarks

Security and Encrypted Traffic in Higher Demand

Data sourced from httparchive.org. Top 100 and million sites as ranked by Alexa

- 2011: Facebook adds an option for secure login
 2011: Google Search provides secure search
 2013: Facebook, Google Search are encrypted
 2014: Gmail is encrypted
 2014: YouTube traffic is encrypted
- Internet traffic encryption are implemented and provided by Google, FB, Twitter, Yahoo and Snapchat, which accounts for 45-50% (source from VDF, Mozilla)
- Content providers are increasingly planning to provide encryption for their traffic, for example, Netflix and BBC are testing their networks for encryption.
- By 2020, 80% of all Internet Traffic will be encrypted

Encrypted traffic is growing at a faster pace after 2011. Now it accounts for 45-50% of the total Internet traffic, and it continues to grow.

Security should be built as part of Network DNA

Security is more than encryption. It should prevent

- Malicious users
- Malicious traffic flows
- Route hijacks

Agenda

- Introduction
- Ubiquitous Mobility
- ID-Oriented Networking
- New Transport
- Self-X Networking
- Security and Trustworthy Network
- Concluding Remarks

Protocols for IP 2020: A Summary

Thank you

www.huawei.com

