A

Surface Enhanced Raman Scattering: Substrate Design and Fabrication

Victor Ovchinnikov

Department of Aalto Nanofab Aalto University Espoo, Finland

A

Outline

- SERS principles and applications
- SERS substrates
 - Design
 - Fabrication methods
- Commercial SERS substrates
 - Specification
 - Understanding substrate design and processing
 - Proper substrate choice

Trace detection technologies

- Mass spectrometry and gas chromatography
 - Cost
 - Size
- Fluorescence spectroscopy
 - Excitation in visible range
 - Requires fluorophore
- SERS
 - Substrate price \$10's-\$100
 - Sensitivity and repeatability issues

A SERS measurements using a substrate

P-SERS[™] Technology Technical Paper Diagnostic anSERS https://www.diagnosticansers.com/technical/

July 24, 2016

A Trace chemical marker detection

BPE (1,2-Bis(4-pyridyl)ethylene)

Diagnostic anSERS https://www.diagnosticansers.com/technical/

July 24, 2016

SERS advantages

- Can be used with solids, liquids or gases
- No sample preparation needed (KBr, nujol)
- Non-destructive, non-invasive
- Works in-situ and in-vitro for biological samples
- No vacuum needed
- Works under a wide range of conditions (temperature, pressure)
- Short time scale
- Can work with aqueous solutions
- Glass vials can be used
- Can use down fiber optic cables for remote sampling
- Very small analyzing volume till single molecule
- Extremely high spatial resolution
- Inexpensive, portable equipment
- Simultaneous detection of multiple sample constituents (multiplexing)

A

- Cannot be used for metals or alloys
- Problems with quantitative analysis
- Can be swamped by fluorescence from some materials
- Stability and repeatability issues

SERS applications

- Pharmaceutical industry
- Biotech industry
 - Bacteria, DNA and protein detection
 - Intracellular measurements (glucose measurement *in vivo*)
- Food industry
 - Melamine detection in milk
 - Pesticide detection
- Law enforcement and homeland security
 - Explosives detection (DNT)
 - Trace detection of narcotics such as cocaine and heroin
- Anti-counterfeiting (tags)
 - Weakened/inactive counterfeit drugs
 - Counterfeit petrol, perfumes and liquors
- Nanosensors

Scattered radiation

July 24, 2016

A

Energy levels

July 24, 2016

A Cross-sections of the optical processes

R. Aroca, Surface-Enhancend Vibrational Spectroscopy, J.Wiley & Sons Ltd, 2007

Raman spectrum examples

July 24, 2016

ICQNM 2016

6 Nice, France

- Raman spectroscopy provides 'fingerprint' of molecular bonds and crystalline structure (phonons) in dependence on environment conditions (temperature, pressure ...) through non-resonance excitation of any vibrational transitions
- At the same time method applications in real life are hindered by very low cross-section of Raman scattering

E. C. Le Ru et al., J. Phys. Chem. C, 111, 2007, p.13794–803

A Steps of Raman development

- Laser application
 - dramatically improved power of excitation and Raman signal
- SERS effect
 - Enhanced method sensitivity up to 10¹⁴
- Raman microscope
 - Decreased probe volume (light spot diameter below 1 μ m)
- Portable SERS
 - Mobility of analyses

C. Douketis et al., J. Chem. Phys. 2000, 113, 11315-23

SERS discovery

- M. Fleischmann, P. J. Hendra, and A. J. McQuillan.
 "Raman spectra of pyridine adsorbed at a silver electrode."Chem. Phys. Lett., 26, 1974, p.163–66
- Jeanmaire D.L. and Van Duyne R.P., "Surface Raman spectroelectrochemistry, part 1: heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode." *J. Electroanal. Chem.*, 84, 1977, p.120
- Albrecht and Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode." *J. Am. Chem. Soc.*, **99**, 1977, p.5215-17

July 24, 2016

ICQNM 2016 Nice, France

©2009 by The Royal Society

SERS definitions

- SERS is a phenomenon associated with the enhancement of the electromagnetic field surrounding small objects optically excited near an intense and sharp plasmon resonance. The enhanced fields excite the adsorbate (probe) and the scattered radiation will again be enhanced.
- Surface-enhanced Raman scattering (SERS) consists in using the large local field enhancements that can exist at metallic surfaces (under the right conditions, typically by profiting from localized surface plasmon resonances) to boost the Raman scattering signal of molecules at (or close to) the surface.

E.C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and related plasmonic effects, Elsevier , 2009

Lolcalized surface plazmon resonance (SPR) in metal sphere

The (complex) electric field inside the sphere is constant

Ag sphere (r = 35nm) in vacuum, at resonance wavelength 370 nm

E.C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and related plasmonic effects, Elsevier , 2009. Stiles P.L. *et all*, Annual Review of Analytical Chemistry, 1, 2008, p.601-26

A Electric field outside of metal sphere

$$\mathbf{E}_{out}(x, y, z) = E_{\mathbf{0}}\hat{\mathbf{z}} - \alpha E_{\mathbf{0}} \left[\frac{\hat{\mathbf{z}}}{r^3} - \frac{3z}{r^5} (x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}) \right]$$

 x_1y_1z - Cartesian coordinates, r - radial distanse from sphere to the point $B(x_1y_1z)$ $\hat{x}, \hat{y}, \hat{z}$ - Cartesian unit vectors 4-

 $\alpha = ga^3$

a-radius of the sphere

$$g = \frac{\varepsilon(\omega) - \varepsilon_M}{\varepsilon(\omega) + 2\varepsilon_M}$$

K. Kneipp, Physic Tody, **60**(11), 2007, p. 40-46 Stiles P.L. *et all*, Annual Review of Analytical Chemistry, 1, 2008, p.601-26

*E*⁴ enchancement of outside field

Electric field at the surface of nanosphere

 $|\mathbf{E}_{out}|^2 = E_0^2 [|1 - g|^2 + 3\cos^2\theta (2\operatorname{Re}(g) + |g|^2)]$

Maximum \mathbf{E}_{out} at $\theta=0^{\circ}$

 $|\mathbf{E}_{out}|^2 = 4E_0^2|g|^2$

Enhancement factor:

$$EF = \frac{|\mathbf{E}_{out}|^2 |\mathbf{E}'_{out}|^2}{|\mathbf{E}_0|^4} = \mathbf{4}|g|^2 |g'|^2$$

(in theory 10¹¹ and 10³, for field and chemical, respectively)

Stiles P.L. et all, Annual Review of Analytical Chemistry, 1, 2008, p.601-26

Electromagnetic enhancement in near-field

July 24, 2016

Ag dimer enhancement

E. Hao and G. C. Schatz, J. Chem. Phys., Vol. 120, No. 1, 1 January 2004

Plasmonic welding

E. C. Garnett, Nature Materials 11, 241–249 (2012)

July 24, 2016

A

 $\lambda_{\text{max}} = (\lambda_{\text{ex}} + \lambda_{\text{vib}})/2$

NSL with 450nm spheres, 55 nm Ag on glass

SERES – suraface enhanced ecxitation spectroscopy

SERS is maximum when laser excitation is between SPR and the analized specturm line

J. Phys. Chem. B 2005, 109, 11279-11285

- High local electromagnetic field near the plasmon nanostructures provides very high enhancement of Raman scattering (SERS)
- SERS effect depends on metal-molecule affinity and resonance conditions in molecule
- The highest *EF* is reached in random 'hot spots', if the probe molecule has got at this 'spot'

A Main types of SERS substrates

- A SERS substrate is any metallic(?) structure (nano-structure) that produces SERS enhancement:
 - Metal electrodes in electrochemistry (roughed electrodes)
 - Metal nano-particles in solution (colloids)
 - 'Planar' metal structures or arrays of metal nanoparticles supported on a planar substrate (glass, silicon)

Metal electrodes

- Surface protrusions 25-500 nm
- Ag in KCI electrolyte
- Oxidation-reduction cycles

Metal colloids for plasmonics

- Mainly Au, Ag or Cu nanoparticles (diameter 10 80 nm) in water
- Produced by:
 - Chemical reduction (co-precipitation and reducing). Process depends on:
 - Kind of metal
 - Reducing reagent
 - AgNO₃ in sodium citrate (Lee and Meisel, 1982). Average 60 nm
 - HAuCl₄ (Frens, 1973 and Natan 1995). Range 16 150 nm
 - Temperature (boiling 1 h)
 - Stabilizing agents
 - Metal ion concentration
 - Laser ablation
 - Photoreduction
- The best SERS is provided by highly aggregated colloids (dimers etc.)
- Enhancement up to 10¹⁴ (SMD possible)

Images of metal colloids

TEM of Ag citrate colloid λ_{max} = 406 nm

TEM of Au nanorods, λ_{max} = 525 nm and 885 nm

AFM of Au nanospheres embedded in film of biopoymer chitosan (inert organic matrix)

TEM of Au borohydride colloid, Au particles 20-70 nm, λ_{max} = 535 nm

TEM of Au nanosquares

AFM of Ag nanowires in dendrimer matrix

R.F. Aroca et al. / Advances in Colloid and Interface Science 116 (2005) 45-61

A Variety of geometric morphologies

Material and size effect in plasmon resonance

Materials Today, Feb 2004, p. 26-31

Material dependent features

- Ag the highest EF, up to 10¹⁴
- Au bio-compatibility
- Mixture of Au and Ag nanoparticles immunogold colloids
- Core-shell Ag@SiO₂, Au@Al₂O₃-
 - stability in all environments
 - better spreading on different surfaces
 - agglomeration protect
- Magnetic core for particle position controle

Detection of insecticide

Gold lace nanoshells

Nanoshell (core-shell)

4-mercaptobenzoic acid (MBA)

Colloid disadvantages

- Storage usually are used fresh prepared
- Using in portable spectrometers
- Reproducibility
- Cost
- Limited range of materials

A Fabrication of planar SERS substrates

- Deposited films (self-organized metal islands)
- Beam lithography (ring, crescent, dimer...)
 - EBL
 - FIB
- Interference lithography
- Nanoimprint
- Template assisted lithography
 - Porous polymers (polycarbonate membranes)
 - Porous anodic alumina Al₂O₃
 - Nanosphere lithography (NSL)

July 24, 2016

ICQNM 2016 Nie

Nice, France

A 'Planar' substrates - metal island films

- Prepared by PVD physical vapor deposition
- Applicability to any substrate
- High purity
- Structure can be controlled by
 - deposition rate (0.1 10 Å/s)
 - substrate roughness and temperature
 - mass thickness (4 8 nm)
 - Annealing (200 400°C)

Nanohole array by lift-off

100 nm thick Au 200 nm holes

M. Najiminaini et al., Opt. Express 19, 26186-26197 (2011)

• FIB lithography is superior to EBL:

- Higher resolution
- Higher resist sensitivity
- Additionally to EBL:
 - Local ion beam etching (subtractive lithography)
 - 3D patterning
 - Local deposition of materials (additive lithography)
 - Direct patterning of hard mask layers
- Multi-beam systems

A Lloyd's mirror interference lithography

Pillar based substrate

A Nanoimprint lithography (NIL)

- Thermal assisted (T-NIL), 50 nm pitch, 100°C above T_g, 50-100 bar, 1995
- UV-NIL, 5 nm features, 0-5 bar
- Soft UV nanoimprint lithography (Soft UV-NIL), sub-50 nm range

Nanoimprint

Recent Advances in Nanofabrication Techniques and Applications, InTech, 2011, p. 140

Plasmonic nanocavities 200 nm, pitch 400 nm

A

NSL

Recent Advances in Nanofabrication Techniques and Applications, InTech, 2011, p. 508

Nanocrescents fabricated by nanosphere lithography

H. Rochholz et al., New Journal of Physics, 9 (2007) 53

July 24, 2016

Exotic SERS substrates

- On-wire lithography (segmented structures)
- Nano-capsules
- Nano-antennas (Bowtie, Yagi-Uda)
- Gratings and periodic structures (SPP) Nanoporous gold
- Hybrid SERS substrates (optical waveguide in leaky mode and nanoparticles
- Bio-enabled materials
- Optical fibers

Ideal SERS substrate

- High EF
- No fluorescence background
- Broad wavelength range
- Unlimited laser power
- Long shelf life
- Reproducibility
- Different environments
- Different available sizes
- Homogenity through the substrate area

Saleable SERS substrate (Klarite) Very high enhancement is 'sacrificed' in favor of homogeneity and reproducibility

<u>www.d3technologies.co.uk</u> - www.renishawdiagnostics.com/en/klarite-sers-substrates ZHIDA XU, Master Thesis, University of Illinois at Urbana-Champaign, 2011

Diagnostic anSERS Inc, USA

Ocean Optics Inc, USA

Metal purity Temperature and humidity effect

Table 1: SERS Substrate Product Details					
Specification	RAM-SERS-AU	RAM-SERS-AG	RAM-SERS-SP		
SERS Slide Dimensions	25.4 x 76.2 x 1 mm	25.4 x 76.2 x 1 mm	25.4 x 76.2 x 1 mm		
SERS Active Area	5.5 mm diameter circle	5.5 mm diameter circle	4 x 4 mm square		
SERS Active Chemistry	Gold (Au) Nanoparticles	Silver (Ag) Nanoparticles	Gold/Silver Film		
Slide Material	Borosilicate Glass	Borosilicate Glass	Borosilicate Glass		
Raman Excitation Wavelength	785 nm	532 nm	638 nm		
Storage Lifetime	1.5 months	1 month	6 months		
Reusable	No	No	Yes		
Laser power	≤20 mW	≤20 mW	≤100 mW		
Volume of analyte	15 µL	15 µL	10 µL		

Gold sponge on glass

http://oceanoptics.com/product/sers/

Silmeco ApS, Denmark

SERStrate - Specifications

Dimensions	4x4 mm (other dimensions are available on custom request)
SERS active area	16 mm ²
Sensitivity	ppm to ppb
SERStrate surface metals	Gold or Silver, <i>customization available</i>
Substrate material	Nanostructured Si
Measurement area	Arbitrary
Sampling methods*	Vapor deposition, drop deposition, substrate incubation (immersion)
Laser excitation wavelengths*	514 (silver), 532 (silver), 633 (silver), 780-785 (silver + gold) nm
Laser power density*	<10 W/cm ²

Self organized polymer mask and RIE

Cost

http://www.silmeco.com/

July 24, 2016

HORIBA, Ltd., Japan

(a)

Substrate

source

Dynamic oblique angle vacuum evaporation

High cost

Specifications

- External dimension (slide glass type): 76 mm x 26 mm •
- Active area dimensions (SERS chip dimensions): 4 mm x 3 mm or 5 mm x 7 mm . Recommended measurement field: 4 mm diameter area in the centre
- Recommended excitation wavelength: 633 nm, 785 nm, 830 nm . Designed for enhancement around 800 nm
- The SERS chips are available separately in chip case or already mounted on the glass slide. •

http://www.horiba.com

Enhanced Spectrometry, Inc., USA

High cost Only silver

Only silver		(a)
EnSpectr substrate	Unmounted Chips	Analyte Spacer
Size (mm)	6x6x0.5	Ag 6 nm SiO 15 nm
Active area (mm)	ø 5	Ag 50 nm
Sampling methods	Liquid drop deposition-evaporation	Ag 50 mm
	Liquid drop spin coating	Si wafer
	Immersion	
	Vapour phase deposition	
Laser excitation	λ 450 – 550 nm	
parameters	Spot size – arbitrary	
	Power density < 5000 W/cm	
Enhancement factor,	>10 ⁵ - for neutral substances	
relative to a non-	>10 ⁷ – for resonant Raman analytes and substances exhibiting	
enhancing surface	affinity to silver	
Relative standard	<10%	
deviation in signal		
Twofold reduction of the	70 hours after opening the package	
enhancement factor at		
open air		
	As deposited silver nanoparticles	

Additional amplification due to Ag layer

http://enspectr.com/sers-substates/

15.0kV X50.0K ' 600nm

Nanova Inc., USA

Bimodal gold particle distribution 60 nm and 15 nm Excitation 785 nm

> Large particles from colloid? Small particles by evaporation

http://www.q-sers.com

July 24, 2016

A

Summary

- Metal nanostructures provide huge *EF* of the Raman scattering, making possible single molecule detection
- High informativity and sensitivity of SERS bursted multiple applications of the method in different areas
- SERS substrate fabrication, distribution and reproducibility are still main problems for SERS
- Desing and fabrication of SERS substrate provide additional information about substrate functionality

A

SERS future

- Commercial production of reproducible and cheap SERS substrate
- Cheap and functional portable Raman spectrometers
- Application of new plasmonic materials (graphene, semiconductors)
- Standartization and data bases for spectrum interpetation