Aggregators Efficiency in Distributed Power Networks

Alain Tcheukam

Tembine Hamidou

ENERGY 2016
Outline

1. Distributed Power Networks
2. DIPONET (Combined Learning and Optimization)
3. Aggregator efficiency and simulations
Power Networks with Prosumers

A grid of micro-grids
A Completely Distributed Power Management System for Renewable Energy

Funders:
- E.ON Energy
- DFG: German Research Foundation
DIPONET (our contribution)

Distributed learning

- **Reinforcement learning**: estimate and anticipate the bidding price
- **Feedback**: the optimization takes into account the price

Optimization

- **Energy storage**
- **Interaction**
Reinforcement learning

preference:
\[p(t+1, s) := p(t, s) + \alpha (r(t, s) - p(t, s)); \ 0 < \alpha \leq 1 \]

Optimization problem (Dynamic programming)

Decision variables : \(-k \leq x_i \leq +k, \ x_i : Z\)

\[x_i \] is the variation for slot \(s_i, \ i = 1, \ldots, n \)

Cost function

to be minimized : \[f(x_1, \ldots, x_n) = \sum_{i=1}^{n} (o(x_i) + q_i)p(i, s) \]

Optimal cost : \[C = \min_{x_1,\ldots,x_n} \sum_{i=1}^{n} (o(x_i) + q_i)p(i, s) \]
Algorithm description

Subproblems: $C_j(y_j) = \min_{x_1, \ldots, x_j} \sum_{i=1}^{j} (o(x_i) + q_i)p(i, s) \quad j = 1, \ldots, n$

: $\forall i'. \ 1 \leq i' \leq j, \quad 0 \leq r_0 + \sum_{i=1}^{i'} x_i \leq r$

: $r_0 + \sum_{i=1}^{j} x_i = y_j \quad 0 \leq y_j \leq r$

Dynamic programming: $C_j(y_j) = \min_{-k \leq x_j \leq k} C_{j-1}(y_j - x_j) + (o(x_j) + q_j)p(j, s)$

: $C_0(y_0) = \begin{cases} 0 & \text{if } y_0 = r_0 \\ \infty & \text{else} \end{cases}$

: $C_n(r_0) = C$
Aggregator Optimization model

Decentralized aggregator
- Each prosumer independently exploits the control model proposed.

Centralized aggregator
- A group of prosumer is globally controlled by an aggregator.

Aggregator efficiency
- Based on the type of the network
- The flexibility of prosumers
Distributed Power Networks
DIPONET (Combined Learning and Optimization)
Aggregator efficiency and simulations

DIPONET vs DEZENT

![Graph comparing energy cost for DEZENT and DIPONET consumers over 24 hours.](image)

DEZENT consumer
DIPONET consumer

A. Tcheukam
Optimization model of one prosumer

![Graph showing unit cost energy and optimal profile over 24 hours for two days.](image)

- **Unit cost energy (cent):**
 - Day 2: Black line
 - Day 3: Dotted blue line

- **Energy profiling (x150KW):**
 - Day 2: Red dashed line
 - Day 3: Blue line
Energy cost achieved by the consumer population

![Graph showing energy cost over time for centralized aggregator, decentralized aggregator, and without aggregator.]
Energy cost at the end of the day achieved by the consumer population

![Graph showing energy cost over hours for centralized aggregator, decentralized aggregator, and without aggregator.](image-url)
Aggregators: profit realized.
Conclusion

Model
- combination of reinforcement learning and optimisation.
- simulation results show that our approach is more efficient than the approach used in DEZENT.

Aggregator’s impact
- make use of the flexibilities of the prosumers.
- provide active demand service in the market.

Future works and Applications
- Introduction of Mean-Field-Games in distributed power networks.
Bibliography

A. Tcheukam and H. Tembine, "Mean-Field-Type Games for Distributed Power Networks in Presence of Prosumers", the 28th Chinese Control and Decision Conference (CCDC), May 2016.