Tutorial 2

Architectures for IoT Applications in the Energy Domain

Dr. Guillaume HABAULT

guillaume.habault@telecom-bretagne.eu
Outline

- **Context**
 - Internet of Things
 - Challenges
 - Energy
 - Issues and challenges

- **Architectures for IoT**
 - oneM2M
 - IoT-A
 - IIC
 - AIOTI

- **Smart Energy Aware Systems (SEAS)**
 - Objectives
 - SEAS Reference Architecture Model (S-RAM)
Context

- Internet of Things
- Energy
- Trends, issues and challenges
Internet of Things – Context (1/4)

- **Smart “objects”**
 - Connecting to Internet
 - Feeding others with collected information

- **Anything can be a “thing”**
 - Uniquely identified
 - Provide empirical data

- **Limitless concept**
 - Domains (health, environment, energy, etc.)
 - Services
 - Lots of potential
Internet of Things – Context (2/4)

- **Monitor different environments**
 - Analyze collected data
 - Manage/control environment

- **Constrained devices**
 - Limited capabilities
 - Required adapted protocols

- **Nature of the traffic**
 - Low volume per endpoint
 - Event-driven or Scheduled at regular interval
 - Energy-, resource- and cost-efficient

- **Different from Human communications**
 - High-volume per endpoint
 - Burst-like

⇒ Internet has not been designed for such traffic
Cisco’s prevision, number of things:

- In 2008, > people living on earth
- In 2020, ~ 50 billion

⇒ Exponential grows of devices and traffic
Internet of Things – Challenges (4/4)

- Manage such amount of devices
 - With different capabilities (Access, hardware, etc.)
 - Specific traffic
 - Required specific protocols (IPv6, CoAP, etc.)

- Architecture
 - Scalable, adaptable and dynamic
 - Automated
 - Develop new business and services

- Protect device and information
 - Access control and storage of data
 - Privacy of data
 - Secure communication

⇒ Dedicated architecture is required
Energy – Context (1/3)

- **Different type of energy sources**
 - Each with advantages and drawbacks
 - (un)limited
 - (ir)regular
 - Hazardous for the planet

- **Increasing needs**

- **Difficulty to manage/monitor**
 - Needs vs Production vs Actual consumption
 - Over-production penalty
 - Understand consuming behavior
Energy – Context (2/3)

- **Energy network**
 - Centered on big production sites
 - With widespread distribution network
 - And consumer at endpoints

- **Desire to**
 - Protect the planet with
 - Better sources
 - Better consumption
 - Decrease pollution
 - Lower waste and losses

⇒ **IoT might help achieve these objectives**
Energy – Electricity (3/3)

Growing usage of local renewable production
⇒ Producer and consumer: “Prosumer”
 • Less reliable
 • Higher demand
 • From rigid to distributed network

Timely issue
• Growing number of devices
• Increasing number of Electric Vehicles
⇒ Effect on peak time consumption
 • Need for better management systems

Optimize consumption
• Influence “prosumer”
 – Via demands (shift or use of alternatives)
 – With tools to better use renewable energies
• At different scale
IoT and Energy – Challenges (1/4)

- IoT can help monitor, manage, optimize and coordinate both production and consumption

- With proper management,
 - Local production and consumption can be balanced
 - Both local and global production can be optimized and coordinated
 - Local behavior can support the main grid when required (e.g. peak time)
 - Etc.

- Create new businesses
 - Flexibility (e.g. negawatts)
IoT and Energy – Challenges (2/4)

- Need for an architecture to interconnect energy actors and better manage energy use

- Properly balancing energy network
 - Real-time and predictive measurement
 - Control capabilities on large distributed volume
 - Involve end-user

- Control load possible for decades but is not widely enough adopted to cope with current challenges

- Required to
 - Find each party
 - Access a resource
 - Learn details from different endpoints
 - Implement technical compatibility to each endpoints
 - Compensate for access and compliance to commitments
IoT and Energy – Requirements (4/4)

- **Need for an architecture**
 - Scalable
 - Dynamic
 - Automated
 - Secure

- **Include prosumer in the architecture and management**

- **Enable different levels of management**
 - Local
 - Global (when possible)
 - Etc.

- **Different architectures/platforms/systems exist to**
 - Interconnect different nodes and systems
 - Manage energy Demand and Response
 - Collect and analyze data
Architecture for Internet of Things

- State-of-the-Art
 - oneM2M - FA
 - IoT-A - ARM
 - IIC - IIRA
 - AIOTI - HLA
- Which one for the Energy domain?
Functional Architecture (1/4)

- **oneM2M**
 - 8 ICT standards bodies
 - 6 Standard Development Organizations

- **Observation:**
 - Several M2M standardization effort
 - ETSI M2M
 - OMA DM
 - Lightweight M2M

- **Consequences**
 - Scattered effort
 - No common solution
Functional Architecture (2/4)

- Proposition: oneM2M Functional Architecture

- Motivations
 - Prevent duplication of standardization effort
 - Need for a common M2M Service Layer
 - Connect the myriad of field devices with all M2M applications

- Objectives
 - Ensure most efficient deployment of M2M communications systems
 - Develop technical specifications
Functional Architecture (3/4)

Field Domain

Application Layer

Common Services Layer

Network Services Layer

Infrastructure Domain

NoDN

ASN

ADN-AE

ADN-CSE

ASN

ADN-AE

ADN-CSE

MN

MN-AE

MN-CSE

IN

IN-AE

IN-CSE

IN

IN-AE

IN-CSE

IN

IN-AE
Results

- Full technical M2M architecture
- Interconnection with bank systems

No information regarding

- Automation using semantics and ontology (yet)
- Different management levels

Drawbacks

- Focus on M2M
- Few involvement of end user
Internet of Things – Architecture (IoT-A)
- European FP7 Research Project

Observation: Current “smart” solutions
- Used specific application and architecture
- Left little place for interoperation

Consequences
- IoT landscape fragmented
- Not fully using IoT potential
 - i.e. crossing information from different domains
Proposition: Architecture Reference Model

Motivations
- Develop guidelines to build compliant IoT solutions
 - Common understanding of IoT
 - Common foundation (interoperable system)
 - Standardized interfaces
 - Providing best practices

Objectives
- Provide a common Reference model for IoT Domain
- Help develop all IoT-related solutions
Results

- Abstract model to fit to any domain
- Semantic description of each entity
- Several interoperable IoT solutions based on common grounds

No information regarding

- Automation using semantics and ontology
- Any implementation and performance result
- Interconnection with other systems (e.g. bank)
Industrial Internet Reference Architecture (1/4)

- **Industrial Internet Consortium**
 - Composed of several Industry players
 - Aims to promote and accelerate development of industrial internet technologies

- **Observation**: Lots of industrial control systems

- **Consequences**
 - Industrial IoT landscape fragmented
 - Not fully using power of IoT
 - i.e. crossing information from different domains, especially non industrial one
Proposition: Industrial Internet Reference Architecture

Motivations
- Connect industrial systems with people
- Fully integrate them with enterprise systems, business processes and analytics solutions
- Increase optimization, operation and collaboration among different autonomous control systems

Objectives
- Bring these systems online
- Combine them with organizational or public information
- Form large end-to-end systems
- Provide guidelines for
 - Standard-based, open and horizontal architecture frameworks
 - Implementing reference architectures with interoperable and interchangeable blocks
Industrial Internet Reference Architecture (3/4)

Edge Tier
- Sensor
- Actuator
- Controller
- Edge GW

Platform Tier
- Service Platform
 - Data transform
 - Analytics
 - Operations

Enterprise Tier
- User
 - Application
 - Rules & Controls
 - OT User
Industrial Internet Reference Architecture (4/4)

- **Results**
 - High level of abstraction to support any industrial domain requirement
 - Hierarchical node management
 - On going testbeds

- **No information regarding**
 - Automation using semantics and ontology

- **Questioning**
 - Centralized solutions ?
 - Application to non industrial scenario (e.g. energy) ?
Alliance for Internet of Things Innovation
- Initiated by the European commission
- Creation of a dynamic European IoT ecosystem to unleash the potential of the IoT

Observations:
- No common European IoT market
- Current systems mainly focused on sensors

Consequences
- IoT landscape fragmented
- Not fully using power of IoT, especially at large scale — i.e. crossing information from different domains
High Level Architecture (2/3)

- **Proposition:** AIOTI High Level Architecture

- **Motivations**
 - Need to foster interoperability
 - Link architecture with semantic interoperability
 - Use ISO/IEC/IEEE 42010 to provide minimal requirements

- **Objectives**
 - A single market for IoT
 - A thriving IoT ecosystem
 - A humand-centered IoT approach
 - Interconnection with non-IoT systems
Results

- Minimal model based on semantic
- Three management levels (device, gateway and infrastructure)
- Domain model derived from IoT-A
- Functional model compatible with oneM2M and IIC architectures

No information regarding

- Interconnection with other systems

New alliance only few documents available
Which one to choose?

- **Energy domain requires**
 - Involvement of prosumer
 - Interconnections with others systems (e.g. bank)
 - An architecture adaptable and scalable
 - Different levels of management, decision and optimization
 - Coordination between each level
 - Automation
 - Mobility management

- None satisfy all these requirements
Smart Energy Aware Systems

- What?
- Why?
- Proposed solution
Smart Energy Aware Systems

■ European Project

■ Goal
• Enable better energy resource management (both production and consumption)

■ Provides the means to do it
• Universal language enabling automatic communications
• Innovative architecture enabling scalable, efficient, dynamic and real-time management
Enhanced architecture

Define an architecture
- Compatible with IoT architecture model
- Suitable for energy domain and especially electrical network
- Nodes may
 - Move without breaking the architecture
 - Evolve with hardware enhancement

Hybrid Architecture
- Interconnect all energy players
- Structured peer-to-peer and client/server models
- Efficiently search for a given resource/information
- Optimizing entities interactions/requests
- Facilitating data analysis

Requirements
- Common information model
- Transaction capabilities
- Data transmission
- Field deployment
 - Self configuration
 - Supports discovery
 - Management capabilities
- Security
 - Identity enable
 - Multiple trust levels
 - Multiple level of authorization
SEAS Reference Architecture Model (S-RAM)

SEAS Core Domain

SEAS Field Domain

IP Domain

Non-IP Domain

SFE: SEAS Field Entity
SCE: SEAS Core Entity
SCS: SEAS Core Service
GM: Group Manager
EDO: Energy Distribution Operator
EMO: Energy Market Operator
ES: Energy Supplier
SP: Service Provider
OS: Ontology Service
RS: Registration Service
A3S: Security Service
TS: Transaction Service
FO: Flexibility Operator
Estimation of Photovoltaic Panel Production

- **Simple scenario**
- **Measure production:**
 - Several possibilities
 - Fairly simple
 => EU visualizes its production

- **Estimate future production?**
 - Inform the grid
 => Better knowledge of load shedding capabilities
 => Send demands accordingly
 - Inform the EU
 => Better consumption planning

- **How to realize it?**
S-RAM Proof-of-Concept

1. Registration
2. Search for available Services
3. Exchange information with chosen Service Provider
S-RAM PoC

- **Learning based on previous**
 - Production measurements
 - Cloudiness percentage forecasts

![Graphs showing power vs. cloudiness percentage](image-url)
S-RAM PoC – Production estimation results

![Graph showing power consumption over time](image)

- Estimated
- Measured

Power (Watts)

Time (hour)
What next?

- Finish implementation of Core Services

- Setup different testbeds
 - Implement more services
 - Test automation for deployment and use

- Test interoperability with other architectures
Thank you for your attention