Cyber Security –
Lisbon, June 30th, 2016
Our milestones – Across 170 years of history

1816-1892
Company founder, visionary and inventor

1866
Dynamo

1847
Pointer telegraph

1959
SIMATIC controller

1925
Electrification of Ireland with hydropower

1983
Magnetic resonance tomograph

2010
TIA Portal for automation

1975
High-voltage direct-current (HVDC) transmission

2015
Sinalytics

2012
Field testing of world's largest rotor at an offshore wind farm

1983
Magnetic resonance tomograph

1959
SIMATIC controller

1866
Dynamo

1816-1892
Company founder, visionary and inventor

Werner von Siemens

Siemens innovations over 168 years
Our innovative power in figures – Siemens as a whole and Corporate Technology

Expenditures for research and development

€4.5 billion
Expenditures for R&D in fiscal 2015

Inventions and patents – securing our future

7,650 inventions¹
3,700 patent applications

University cooperations – our knowledge edge

32,100 R&D employees¹

Corporate Technology – our competence center for innovation and business excellence³

7,800 employees worldwide
5,300 software developers

1,600 researchers
400 patent experts

¹ In fiscal 2015
² Centers of Knowledge Interchange
³ Employee figures: Status September 30, 2015

1 Expenditures for R&D in fiscal 2015.
2 Inventions and patent applications.
3 R&D employees worldwide.
4 Corporate Technology – our competence center for innovation and business excellence.
Corporate Technology at a glance

Corporate Technology (CT)
CTO – Prof. Dr. Siegfried Russwurm

|---|----------------------------------|---------------------------------|---------------------|
| • Business excellence | • Protection, use and defense of intellectual property | • Competence center for horizontal and vertical product-and-system integration as well as software, firmware, and hardware engineering | • Access to external innovations
• Quality management | • Patent and brand protection law | | • Start-up foundation
• Internal process and production consulting | | | • Commercialization of innovations |

Research in Digitalization and Automation

• Research activities covering all relevant areas in digitalization and automation for Siemens

Research in Energy and Electronics

• Research activities relating to energy and electrification, electronic, new materials and innovative manufacturing methods

Technology and Innovation Management

• Siemens’ technology and innovation agenda
• Standardization, positioning regarding research policy
• Provision of publications relating to R&D

University Relations

• Global access to the academic world
• Top positioning in terms of university cooperations
Increasing intelligence and open communication drive security requirements in various industrial environments.

- Process Automation
- Building Automation
- Factory Automation
- Urban Infrastructures
- Energy Generation / Automation / Distribution
- Mobility Systems
Concept for the industrial application of the Internet of Things – The Web of Systems provides security for critical infrastructures

- Siemens believes the Internet of Things has tremendous potential
- In critical infrastructure, customers have much higher requirements regarding reliability, service life and data protection
- For this reason, in a Web of Systems the data is processed locally
- This ensures that the knowledge and the intellectual property of our customers remain protected
- Siemens is already using this technology in many projects today
The threat level is rising – Attackers are targeting critical infrastructures

Evolution of attacker motives, vulnerabilities and exploits

<table>
<thead>
<tr>
<th>The Age of Computerworms</th>
<th>Cybercrime and Financial Interests</th>
<th>Politics and Critical Infrastructure</th>
<th>Hacking against physical assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code Red</td>
<td>Zeus</td>
<td>Aurora</td>
<td>States</td>
</tr>
<tr>
<td>Slammer</td>
<td>SpyEye</td>
<td>Nitro</td>
<td>Criminals</td>
</tr>
<tr>
<td>Blaster</td>
<td>Rustock</td>
<td>Stuxnet</td>
<td>Terrorists</td>
</tr>
<tr>
<td>"Hacking for fun"</td>
<td>"Hacking for money"</td>
<td>"Hacking for political and economic gains"</td>
<td>Activists</td>
</tr>
<tr>
<td>Hobbyists</td>
<td>Organized Criminals</td>
<td>Hacktivists</td>
<td></td>
</tr>
<tr>
<td>Backdoors</td>
<td>Credit Card Fraud</td>
<td>State sponsored Actors</td>
<td></td>
</tr>
<tr>
<td>Worms</td>
<td>Botnets</td>
<td>Anonymous</td>
<td></td>
</tr>
<tr>
<td>Anti-Virus</td>
<td>Banker Trojans</td>
<td>SCADA</td>
<td></td>
</tr>
<tr>
<td>Hackers</td>
<td>Phishing</td>
<td>RSA Breach</td>
<td></td>
</tr>
<tr>
<td>BlackHat</td>
<td>Adware</td>
<td>DigiNotar</td>
<td></td>
</tr>
<tr>
<td>Viruses</td>
<td>SPAM</td>
<td>APT</td>
<td></td>
</tr>
<tr>
<td>Responsible Disclosure</td>
<td>WebSite Hacking</td>
<td>Targeted Attacks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Website Hacking</td>
<td>Sony Hack</td>
<td></td>
</tr>
</tbody>
</table>

of published exploits
of published vulnerabilities

What makes security in the Digital Grid so important?

Source: ICS Report: Year in review 2015
Numbers represent responses out of 295 participants.

- Performance degradation
- Loss of system availability & control
- Loss of privacy
- Capturing, modification or loss of data
- Reputation (company image)
- Environmental impact
- Financial loss
- Loss of health/life

The Energy Sector is a Prime Target.

Security incidents can affect target solution and connected (critical) assets

Cyber Security ensures reliable operation of critical infrastructures like the Digital Grid
Critical infrastructures
Power system value chain and use case examples

- High Voltage ≥ 100kV
- Medium Voltage 20kV ... 100kV
- Low Voltage ≤ 400V

- Transmission Substation
- Distribution Substation

Generation
- Power Quality Monitoring

Transmission
- Substation Automation
- Inter Control Center Communication
- Remote Maintenance and Service

Distribution
- DER Integration (Metering & Control)
- Remote Services

Consumer / Prosumer

Microgrids
- Connecting electric vehicles to the charging infrastructure
Digital Grid Masterplan Architecture

Digitalization

Cloud enabled Applications

Enterprise IT
- IVR
- GIS
- Network planning
- Asset management
- WMS/mobile
- Weather
- Forecasting
- Web portals
- CIS/CRM
- Billing

Enterprise Service Bus

Grid control applications

CIM

Market driven applications

Global Interoperability: IEC 61850 & 60870, DNP3, OpenADR, DLMS, …

Automation

Electrification

Smart transmission

01100
011010
010110

Smart distribution

01100
011010
010110

Smart consumption and microgrids

CIM – Common Information Model (IEC 61970)
Cyber Security is an integral part of Digital Grids to ensure reliable operation.
Cyber security targets for a power system operator

Security Targets

- Security of Supply
- Data Protection & Privacy (considering Availability, Integrity, Confidentiality)

Power System Operator

- Secure Operations
- Achieve

- Mitigate Cyber Risks
- Comply Cyber Regulations & Standards

- People & Organization
- Processes
- Products & Systems

Cyber security targets for a power system operator
Cyber security needs a holistic methodology

Identify
Understanding the business context, the resources that support critical functions and the related cyber security risks.

Protect
Protection of critical infrastructure service, e.g., energy supply by safeguarding the overall system.

Respond
Taking action against detected cyber security related events. Supports the ability to contain the impact of a potential event.

Detect
Rapid identification of the occurrence of a cyber security related event.

Recover
Creating plans for resilience and restoration of any capabilities or services that were impaired due to a cyber security related event.

Cyber security needs a holistic methodology.
Managing cyber security in Digital Grids through Guidelines / Standards / Regulation

- NIST Smart Grid Interoperability Panel, Cyber Security WG → NIST IR 7628
- SGAM – Smart Grid Architecture Model → SG-CG (M.490) → SEG-CG (successor)
- BDEW White Paper Requirements for Secure Control and Telecommunication Systems

- IEC TC 57 – Power systems management and associated information exchange → IEC 62351-1 … -14
- IEC TC 65 – Industrial Process Measurement, Control and Automation → IEC 62443-1 … -4
- ISO 27001 – Information technology - Security techniques - Requirements
- ISO 27002 – Code of Practice for information security management
- ISO 27019 – Information security management guidelines for process control systems used in the energy utility industry on the basis of ISO/IEC 27002
- IEEE 1686 – Intelligent Electronic Devices Cyber Security Capabilities
- IEEE 1588 – Precision Clock Synchronization Protocol for Networked Measurement and Control Systems
- IEEE C37.238 – Profile for Use of IEEE 1588 PTP in Power System Applications

Note: the stated organizations and standards are just examples and are not complete

- Critical Infrastructure Protection CIP 001-014
- Executive Order EO 13636 Improving Critical Infrastructures
- IT Security Law
- German Energy Act req. SM GW
- Critical Infrastructure Protection, Certification and Key Measures
Interoperability through security standards for the power utility ecosystem involves vendors, integrators, operators.

- Standards have different importance for:
 - Vendor
 - Integrator
 - Operator

as they target:

- specific technical means ensuring interoperability
- procedural requirements
- addressing risk based security requirements
- auditablity of actions
Information Security Management – Application of the ISO 270xx series targets Digital Grid specific security controls

• ISO 27001/2 provide security requirements and implementation guidance that target ISMS (Information Security Management Systems) at the most generic level
 • Extended through domain / sector-specific specifications, e.g.
 • 27011: Telecommunication,
 • 27015: Finance sector,
 • 27017 / 27018: Cloud Computing,
 • 27019: Energy utilities

• ISO TR 27019
 • Process control systems [...] for controlling and monitoring the generation, transmission, storage and distribution of electric power, gas and heat in combination with the control of supporting processes
IEC / ISA-62443 as standard for industrial security enables a graded security approach to achieve appropriate protection

- IEC 62443 – Framework specifying security requirements for industrial automation control systems (IACS)
- Addresses organizational and technical requirements
- Supports purpose fit security solutions by supporting security features with different strength
Core communication standards for Digital Grids

IEC TC57 reference architecture with domain-specific cyber security

- IEC 61970 / 61968 Common Information Model (CIM)
- IEC 62325 Market Communication using CIM
- IEC 61850 Substation, Distribution, DER Automation
- IEC 60870 Telecontrol Protocols (serial/TCP)
- IEC 62351 Security for Power Systems enables end-to-end security
Mutual trust based on X.509 certificates – A key element in IEC 62351 based power system security

What is a certificate?

- Data structure binding a public key to a subject
- Public key has a corresponding private key
- Limited lifetime
- Binding through certification authority (CA)

→ Comparable with passport or ID

Certificate management is achieved through a PKI

- Enrollment (manual or automatic)
- Key generation
- Certificate issuing
- Certificate distribution
- Certificate revocation
Application of standards and guidelines
Enhancing IEDs in digital substations with cyber security

- Secure communication (mutual authentication and encryption) between Engineering (DIGSI5) and the IED (SIPROTEC 5)
- Connection password according to Regulations and Standards
- Recording of access attempts in a non-volatile security log and IEC 61850 messaging
- Confirmation codes for safety-critical operations
- Secure development
 - Patch management
 - Antivirus compatibility
- Product Hardening
 - Independent testing
 - Secure development
 - Digitally signed firmware
 - Separation of process and management communication
 - Internal firewall
 - Crypto-chip for secure information storage

Connection password according to Regulations and Standards
Application of standards and guidelines: The transition from digital substations to secure digital substation addresses multiple aspects.
Security has to be suitable for the addressed environment

Awareness and Acceptance

Since security is not just a technical solution, which can be incorporated transparently, we need to consider how humans can get along with this issue. This needs, especially for automation environments, actions for:

- awareness trainings
- help people to understand security measures and processes
- provide user friendly interfaces and processes
Conclusions

- Machine-2-Machine connectivity down to field devices is a major driver for the Digital Grid
- The threat level for critical infrastructures like the Digital Grid is rising
- Cyber security has been acknowledged as prerequisite for limiting risks in and to support a reliable Digital Grid
- Standardization and guideline activities support the alignment of approaches and supports interoperability
- Regulation fosters adoption of security by domain specific requirements (through laws)
- Cyber security needs a holistic approach – collaboration between vendors, integrators and operators; taking into account people, processes and products
- Still, some challenges remain, like the migration from existing environment to an environment featuring appropriate cyber security measures
Thank you for the attention! Questions?
Contact Information

Siemens AG

Steffen Fries
Principal Key Expert
CT RDA ITS
Otto-Hahn-Ring 6
81739 Munich
Germany

E-mail
steffen.fries@siemens.com

Internet
siemens.com/corporate-technology

Digital Grid
siemens.com/digitalgrid