

949. 949.	Topics of the Panelists
Reutlingen University	Serzy W. Grzymala-Busse: "Incompleteness versus inconsistency in Data Mining"
	Dimitar Hristovski: "Answering biomedical questions using semantic relations"
	Andreas Schmidt: "Named entity recognition and Disambiguation"
	♥Fritz Laux: "Answering Queries with Crowdsourcing"
2 /10 © F. Laux	

	Crowdsourcing
Reutlingen	✤ Portmanteau: Crowdsourcing = Crowd + Outsourcing
University	Definition: Outsourcing tasks to many Web users (the Crowd) Many complicated definitions:
	Jeff Howe: "Simply defined, crowdsourcing represents the act of a company or institution taking a function once performed by employees and outsourcing it to an undefined (and generally large) network of people in the form of an open call." ¹⁾
	Daren Brabham: ""online, distributed problem-solving and production model." ²⁾
	Christian Papsdorf: Crowdsourcing is the strategy of outsourcing working power by an organization or individual of usually internally performed payed services to a number of unknown persons to gain freely usable and direct economical benefit. (translated from ³)
	✤ Using crowd intelligence to execute small, well defined human intelligence tasks (HIT)
	 Jeff Howe, "Crowdsourcing: A Definition", URL: http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html, (2006). Daren C. Brabham," Crowdsourcing as a Model for Problem Solving", URL: http://www.webcitation.org/67BLxbafe
3 /10 © F. Laux	 Ch. Papsdorf, "Wie Surfen zu Arbeit wird", Crowdsourcing im Web 2.0, Campus Verlag2009, S. 69. ISBN: 359339040X

	CrowdDB
Reutlingen University	 New functionality: Answer queries the cannot be answered by computer only, e.g. Processing requires human input that is missing Performing functions like matching, ranking or summary based on fuzzy criteria Closed world assumption is given up
	Small extension of SQL required Crowd colums/tables, CNULL
	 ♥ Problems The workload for crowdsourcing Tormulate precise HITs → cultural background ♥ Quality of results
5 /10 © F. Laux	

- 349. - 349.	SQL Extension ¹⁾ of CrowdDB
Reutlingen University	 SQL DDL Extensions <i>G</i> Crowdsourced column (→ missing values suppl. by crowd) <i>G</i> Crowdsourced table (→ missing records supplied by crowd)
	 Examples SELECT market_capitalization FROM company WHERE name = "I.B.M." Empty answer if no record for "I.B.M." is found or name was entered differently Easy to find answer for a person with internet access
	 ✓ SELECT image FROM picture WHERE subject like "business" ORDER BY relevance LIMIT 1 ⇒ Easy to answer for humans ⇒ If no relevance to a specific topic or if the name instead of the subject has been previously stored this query cannot be answered by the computer
6 /10 © F. Laux	¹⁾ M. Franklin, D. Kossmann, T. Kraska, S. Ramesh, R. Xin; "CrowdDB: Answering Queries with Crowdsourcing", ACM SIGMOD 2011, Athens, Greece

Biomedical Question Answering using Semantic Relations

Dimitar Hristovski,¹ Dejan Dinevski², Andrej Kastrin¹, Thomas C Rindflesch³

¹Institute for biostatistics and medical informatics, Medical faculty, University of Ljubljana ²Medical faculty Maribor, Slovenia ³National Library of Medicine, National Institutes of Health, Bethesda, MD, U.S.A.

e-mail: dimitar.hristovski@mf.uni-lj.si

Introduction

- Avalanche of information in biomedicine
- Evidence-based Medicine. Clinical practice should be based on evidence. On average, 2 min available for answering a question, but 30 min needed to find answer
- The importance of bibliographic databases, especially MEDLINE
- Information retrieval (IR) tools (e.g. Entrez for PubMed) most frequently used to search MEDLINE

Information Retrieval Tools

- Fast and robust, but:
- Return hits (bibliographic records) as results
- Users must read the returned hits to extract the facts (<u>answers</u>)
- Users cannot ask: Which drugs are used to treat disease X?
- But only: Find relavant <u>articles</u>, which talk about how to treat disease X!

Question Answering

- Allows more precise questions with relations between concepts:
 - Which drugs are used to treat disease X?
 - Which diseases are treated with drug Y?
 - What is causing X?
- First returns facts (answers) and then, on demand, the articles
- <u>Benefits for the user</u>:
 - Less to read
 - Faster and easier to more precise answers

What is used to treat Alzheimer's disease

Relations found: 1145

SemBT Biomedical Question Answering and Discovery

-Semantic relation search	
Query:	
TREATS Alzheimer's disease	
Expand: none 🗢 Filters: 🗆	
Microarray Filter	
Experiment: none	 ⇒. Limit arguments any ⇒ to top N 100
all \diamond genes at p <= 0.0001 \diamond .	
Search	

Semantic Relations:					
Subject	Sem Relation	Object	Frequency		
Cholinesterase Inhibitors	TREATS	Alzheimer's Disease	443		
donepezil	TREATS	Alzheimer's Disease	404		
Acetylcholinesterase Inhibitors	TREATS	Alzheimer's Disease	340		
Memantine	TREATS	Alzheimer's Disease	222		
Galantamine	TREATS	Alzheimer's Disease	216		
Tacrine	TREATS	Alzheimer's Disease	204		
rivastigmine	TREATS	Alzheimer's Disease	196		
Intervention regimes	TREATS	Alzheimer's Disease	165		
Immunotherapy	TREATS	Alzheimer's Disease	132		
Assessment procedure	TREATS	Alzheimer's Disease	119		
Application procedure	TREATS	Alzheimer's Disease	110		
Therapeutic agent (substance)	TREATS	Alzheimer's Disease	<u>92</u>		
Diagnosis	TREATS	Alzheimer's Disease	90		
Expression procedure	TREATS	Alzheimer's Disease	<u>79</u>		
Antioxidants	TREATS	Alzheimer's Disease	75		
Pharmacotherapy	TREATS	Alzheimer's Disease	56		
Physostiamine	TREATS	Alzheimer's Disease	55		

Evidence for the Answers

Evaluate You are signed in as: mitko

donepezil	TREATS	Alzheimer's Disease 0	Correc
treatment of mild-	· · · · · · · · · · · · · · · · · · ·		- 🔻
	t this dose was found to be 22 weeks. (PMID: <u>1983886</u>	e effective similar to donepezil in the treatment of mild-to- 52)	- 💌
Donepezil for Alzh	eimer's disease in clinical	practiceThe DONALD Study. (PMID: <u>15084792</u>)	- 🔻
AD2000: donepezi	l in Alzheimer's disease . ((PMID: <u>15220027</u>)	- 💌
Donepezil for seve	ere Alzheimer's disease . ((PMID: <u>16581383</u>)	- 🔻
	ndomized trials of the effica eimer disease . (PMID: <u>152</u>	acy and safety of donepezil , galantamine, and rivastigmine for the 249273)	- 🔻
galantamine in the			- 🔻
	· · ·	cebo-controlled trials of donepezil for severe AD to further oility/safety. (PMID: <u>19735164</u>)	- 🔻
	n an	n as galantamine, donepezil and rivastigmine are approved for ase (AD) in Canada. (PMID: <u>14675494</u>)	- 🔻
Donepezil for the t (PMID: <u>14560059</u>)	reatment of mild to moder	rate Alzheimer's disease in France: the economic implications.	- 🔻
A long-term compa <u>12875613</u>)	rison of galantamine and d	onepezil in the treatment of Alzheimer's disease . (PMID:	- 💌
[Effect of memantin donepezil]. (PMID:		vith moderate-to-severe Alzheimer's disease treated with	- 💌
Are there long-term	n benefits of donepezil in A	Alzheimer's disease ? (PMID: <u>15559925</u>)	- 💌
		tences occurring at five specific text sites in all 18 RCTs of	

Argument expansion and faceting

Relations found: 15849

Simian B disease

SemBT Biomedical Question Answering and Discovery

Subject:			
Value	Count		
Lesion	447		
<u>Genes</u>	59		
<u>TP53</u>	54		
<u>TP53 gene</u>	53		
<u>Smoking</u>	52		
<u>Single Nucleotide</u> Polymorphism	46		
response	43		
Alcohol consumption	40		
<u>Antimicrobial</u> susceptibility	40		
Cigarette Smoking	40		
Observation parameter	40		
MicroRNAs	38		
Proteins	38		
CDKN2A	37		
<u>Consumption-archaic</u> <u>term for TB</u>	37		
<u>Obesity</u>	37		
DNA	35		
Body mass index	34		
EGFR	34		
<u>Behavior</u>	32		
<u>Estrogens</u>	32		
<u>GSTM1</u>	32		
Carrier of disorder	31		

Semantic relation search			
Query:			
arg_name:neoplasms AND relation:PREDISPOSES			
Expand: both 🗘 Filters: 🗹			
Microarray Filter			
Experiment: none	۵.	Limit arguments any 🗘 to top N 100	
all \Rightarrow genes at p <= 0.0001 \Rightarrow .			
Search			
	Semantic Relation	5:	
Subject	Sem Relation	Object	Frequenc
Prostate-Specific Antigen	PREDISPOSES	Malignant neoplasm of prostate	262
Estrogens	PREDISPOSES	Malignant neoplasm of breast	209
Smoking	PREDISPOSES	Malignant neoplasm of lung	199
Obesity	PREDISPOSES	Malignant neoplasm of breast	155
Fibrosis	PREDISPOSES	Primary carcinoma of the liver cells	148
Alcohol consumption	PREDISPOSES	Malignant neoplasm of breast	122
Helicobacter Infections	PREDISPOSES	Malignant neoplasm of stomach	111
BRCA1 BRCA1 gene	PREDISPOSES	Malignant neoplasm of breast	110
Carrier of disorder	PREDISPOSES	Malignant neoplasm of breast	<u>91</u>
Sun Exposure	PREDISPOSES	melanoma	<u>83</u>
Smoker	PREDISPOSES	Malignant neoplasm of lung	<u>81</u>
Single Nucleotide Polymorphism	PREDISPOSES	Malignant neoplasm of breast	<u>79</u>
Cigarette Smoking	PREDISPOSES	Malignant neoplasm of lung	78
Physical activity	PREDISPOSES	Malignant neoplasm of breast	77
Genes	PREDISPOSES	Malignant neoplasm of breast	76

PREDISPOSES Primary carcinoma of the liver cells

74

Conclusion

- Tool for biomedical question answering presented
- Based on semantic relations extracted from the biomedical literature
- Able to answer various biomedical questions
- Complementary to existing information retrieval systems
- Available at: http://sembt.mf.uni-lj.si
- Paper: Hristovski2015, BMC Bioinformatics 2015 16:6

Incompleteness versus Inconsistency in Data Mining

Jerzy W. Grzymala-Busse'"

' University of Kansas, Lawrence, KS 66045, USA

" Department of Expert Systems and Artificial Intelligence,

University of Information Technology and Management, 35-225 Rzeszow, Poland

An Incomplete Data Set

		Attributes		Decision
Case	Age	Cholesterol	Weight	Risk
1	?	180210	140170	low
2	4560	?	170210	low
3	2045	?	?	low
4	4560	180210	170210	low
5	4560	?	170210	high
6	?	210220	?	high
7	4560	180210	?	high

An Inconsistent Data Set

	Attributes			
Case	Age	Cholesterol	Weight	Risk
1	2045	180210	140210	low
2	4560	180210	140210	low
3	4560	180210	140210	low
4	4560	210220	140210	high
5	4560	180210	210220	high
6	2045	210220	140210	high
7	2045	210220	140210	low

Australian data set

The Eight International Conference on Advances in Databases, Knowledge, and Data Applications

June 26 - 30, 2016 - Lisbon, Portugal

PANEL on DBKDA/GraphSM/WEB

Topic: Current Trends on Information Searching/Query Answering

Andreas Schmidt

Department of Informatics and Business Information Systems University of Applied Sciences Karlsruhe Germany Institute for Applied Computer Sciences Karlsruhe Institute of Technologie Germany

Semantic Search

- Understanding the semantic of text (content analysis) is an essential key asset for advanced searching
- To understand the semantic of text, we have to determine
 - the identity of the (main) entities (i.e. Paul -> 'Pope John Paul')
 - the relations between the identified entities (<a> lives_in)
 - the hierarchies of the identified relations

Named Entity Disambiguation

Named Entity Recognition (NER)

- Discovering single-word or multi-word phrase entities (mentions) in text, like
 - Persons
 - Organizations
 - Locations
 - Temporal expressions
 - Works of Art
 - Product names
- Approaches based on
 - handcrafted, rule based algorithms
 - linguistic grammar-based techniques
 - statistical models (machine learning)

accuracy > 90% Popular system: Stanford NER [FGM05]

Example (from [AIDA])

Michael was the father of Ingres and Postgres, two relational database systems developed at Berkeley. Research at Stanford led to a search engine company, founded by Page and Brin.

Step 1 - NER

mentions

Michael was the father of Ingres and Postgres, two relational database systems developed at Berkeley. Research at Stanford led to a search engine company, founded by Page and Brin.

Step 2- NED

	[Michael Pollan]
	[Michael Jackson]
Michael was the	—— [Michael Stonebraker]
father of Ingres and	[Michael Moore]
Postgres, two rela-	
tional database sys-	[Berkeley, California]
tems developed at	—— [University of California, Berkeley]
Berkeley. Research	——[William Berkeley (governor)]
at Stanford led to a	[Berkeley Square]
search engine com-	[Lennox Berkeley]
pany, founded by	
Page and Brin.	——[Ellen Page]
	— [Jimmy Page]
	[Larry Page]
	[Michael Page]

NED - How to disambiguate a mention?

- Baseline:
 - Choose the most prominent entity (longest wiki article, article with most inlinks, biggest city, ...)
 - Choose the entity that uses the mention most frequently as link anchor

	[Michael Pollan]
	[Michael Jackson]
Michael was the	— [Michael Stonebraker]
father of Ingres and	[Michael Moore]
Postgres, two rela-	
tional database sys-	[Berkeley, California]
tems developed at	[University of California, Berkeley]
Berkeley. Research	——[William Berkeley (governor)]
at Stanford led to a	[Berkeley Square]
search engine com-	[Lennox Berkeley]
pany, founded by	
Page and Brin.	[Ellen Page]
	[Jimmy Page]
	[Larry Page]

[Michael Page]

NED - How to disambiguate a mention?

- Baseline:
 - Choose the most prominent entity (longest wiki article, article with most inlinks, biggest city, ...)
 - Choose the entity that uses the mention most frequently as link anchor
- Improvement:
 - Consider multiple mentions at once and consider the semantic relatedness between the possible entities

Michael was the father of Ingres and Postgres, two rela- tional database sys- tems developed at Berkeley. Research at Stanford led to a search engine com- pany, founded by Page and Brin.	 [Michael Pollan] [Michael Jackson] [Michael Stonebraker] [Michael Moore] [Berkeley, California] [University of California, Berkeley] [William Berkeley (governor)] [Berkeley Square] [Lennox Berkeley] [Ellen Page] [Jimmy Page] [Larry Page] [Michael Page]
---	--

Nichael was the father of Ingres and Postgres, two rela- tional database sys- tems developed at Berkeley. Research at Stanford led to a search engine com- pany, founded by Page and Brin.	[Michael Pollan] [Michael Jackson] [Michael Stonebraker] [Michael Moore] [Berkeley, California] [University of California, Berkeley] [William Berkeley (governor)] [Berkeley Square] [Lennox Berkeley] [Ellen Page] [Jimmy Page] [Larry Page]

Further (difficult) Examples of Disambiguation (from [Hof15])

Murrayfield_Stadium

Marcello_Cuttitta_(Rugby Player)

Scotish Rugby Team

Italian_Rugby_Team

Can you disambiguate this?

When Page played Kashmir at Knebwort, his Les Paul was uniquely tuned

Can you disambiguate this?

References

- [Hof15] J. Hoffart, Discovering and Disambiguating Named Entities in Text, Dissertation, University of Saarland, 2015
- [FGM05] J. R. Finkel, T. Grenager, and C. D. Manning. Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics, ACL 2005, University of Michigan, USA, 2005.
- [Hof11] Robust Disambiguation of Named Entities in Text. Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, Edinburgh, Scotland, UK, 2011
- [MW08] David Milne and Ian H Witten. An Eective, Low-Cost Measure of Semantic Relatedness Obtained from Wikipedia Links. In Proceedings of the AAAI 2008 Workshop on Wikipedia and Articial Intelligence, Chicago, USA, 2008.
- [AIDA] https://gate.d5.mpi-inf.mpg.de/webaida/