CoFounder of the Ethertrust Company
Venezia, Italy, October 9th 2016

Part One: Mobile Payments

Background

Smartcard Genesis
1980, First BO’ French bank card, from CP8
1988, SIM card specification
1990, First ISO7816 standards
1991, First SIM devices
1995, First EMV standards
1997, First Javacard
— The javacard is a subset of the java language R
— Patent US 6,308,317 ‘”‘mﬁ_m =
1998, JCOP (IBM JC/OP) :
1999, Global Platform (GP)
2002, First USIM cards

1988, the 21 (BO’) chip

»"3?-“@ FEPROIV]

Siepaens(SIM) chip, 1997

What is a Secure Element ?

A Secure Element (SE) is a Secure Microcontroller, equipped with host interfaces
such as ISO7816, SPI or 12C .

OS JAVACARD JCOP EXAMPLE: NXP PN532
GP (Global Platform)

ROM 160 KB | o _ I — 1

EEPROM 72 KB e A e ——

RAM 4KB sieeuTL— i PRmeraN MEMORY — FameXE
Crypto-processor N I i il rorcacon s
3XDES, AES, RSA, ECC . ,;5‘_2 | oo <_ KMzmary Management Uit (MU}

Certification CC (Common Criteria) EAL5+

L |

Security Certificates EMVCo Loy ”
MFC secure modules SECURE_MXS51 CPU Kl
Product features PMN&SL cuer| Gtesk | ctock Jr>
Embedded MFC IC PM532) -
Available host interfaces serial, SPI, 12C jﬁ ﬁ ﬁ \/L TRISLEDES
Embedded Secure IC PSCMOT2 TaiERs Co-PROCESSCR
Cobedded Secure I¢ JCOP or 3rd party | mrdy| ssermmes T | e || o
Stacked passive component IC yes B | Bm e
Package thickness 1.2 mm | VBITASE RESULATER | i
Package size =7 mm?2 il Lk
Package type HLOFMNA48 Pascal Urien 5

NFC Genesis

1994, Mifare 1K

— In 2011 Mifare chips represent 70% of the transport market.
2001, 1SO 14443 Standards (13,56 MHz)

— Type A (Mifare)

— Type B

— Type F (Felica)

2004, NFC Forum

— Mifare (NXP), ISO14443A,1S014443B, Felica (Sony)

— Three functional modes :
e Reader/Writer, Card Emulation, Peer to Peer

NFC controllers realize NFC modes

Pascal Urien

From ISO 7816 to ISO 14443

 The basic idea of Wi-Fi design was Wireless Ethernet.

* The basic idea of ISO 14443 design was Wireless (ISO 7816)

Smartcard.
— Contrary to IEEE 802.11 there is no security features at the
radio frame level.

_ ISO 14443
O v=2m fc > uo H Contactless Mode
@ % READER
H=5A/m
(([NFC

1ISO 7816 fo= 13,56 MHz

Contact Mode V=2,2v

Pascal Urien

About Inductive Coquling
S OO0, 00— [@)
D Olw RO ©]me |

Primary Circuit _|_Secondary Circuit \)

F i

Neumann formula
Py = M Tk = POI"ﬂg jg
Ck

M

d1) |L1 M| il

=M

jk ki d2| |L2 M| |i2

No energy propagation,

The Energy is conservative, i.e. imp|ies vicinity proof.
The Energy delivered by the primary circuit Ppp, =il. (M wi2),

is equal to the energy consumed by the secBidat{ftircuit P, =i2. (M wil). 8

Propagation

e

Secure Elements Market

zooo - (3N fin)
T
B
S e
el
SN
2
pln n i
i

2000 2011 2012 20135 2014 2O15F

m Telecom m Payment cards m Government m Device M anufacturers mOthers
Pascal Urien

NFC Standards Overview

NDEF

SNEP

LLCP

Activity Technology / Device Platform
Lizen, RF e
Avoidance. 14443
Technology -
Detection. ISO 14443-2A JB ISO 14443-2A
Collision -
ecomtion SO 14443-3A 14443 | 150 14443-3A
FELICA
-3B

Device Type 1 Type 2 Type 4A | Type 4B Type 3 Tag
Activation Tag Tag Tag Tag Platform

Platform Platform Platform | Platform
Data NFC-DEP Type 1. 2.]P\'Illz)f(;glfP
Exchange Protocol Type 1. 2. and 3 Tag ISO-DEP Protocol and 3 Tag

Half-duplex Protocol Half-duplex

} Protocols

Device -
Deactivation NFCIP_]. ISO 14443_4 NFCIP 1

NFC-SEC

DEP

*ISO/IEC_18092 standard and NFCIP-1 standards are similar
DEP: Data Exchange Protocol

Pascal Urien

Passive Mode

Active Mode
NFCIP-1

11

SIM-Centric Legacy Paradigm

TRANSPORT
Ve ! } SWP

Over The Air Administration

p
PAYMENT- (¢
L\ _4

ACCESS CONTROL

Pascal Urien

NFC KIOSK

12

HID NFC White Paper: SIM Centric Services

Trusted

Ky ... Service
!\@ \Ma‘nager () R a 32D E

TSM-MNO /Ulmgmt
NFC phone

> ' wallet
[N

L, .
TSM-SP // = MNO Reader infrasctucture
| (W)

SII-IOTAN\\\‘*\) Payment
| - Access Control

-~ SENEEd - Transport

L redentials
a—
o 1)
1 Store Office _ TSM-SP | . ~% NFC SIM Phone

Bank

.-—-_ ? Transit

[

/-
Payment card Transit card Issues Issues access Connects service Secure Element Stores credentials NFC antenna
issuer issuer coupons and cards to providers and management securly
loyalty cards employees MHNOs rifc chip
SIMOTA
Manages cards Memory magmt

NFC ecosystem with the Secure Element in the Smiasca %rfl‘l%] MNO 13

Cloud of Secure Elements

NEC APDU STQPAC APDU PAYMENT
KIOSK b

» Remote use

CDA of Secure

= Elements
hosted in the

J/N

cloud

through
CLOUD secure TLS

channel

S
!

m
o
m

Service Provider

NFC- SIM- Secure Software-

CARD-TLS TLS SD-TLS TLS(TEE)
Pascal Urien 14

5mm

About TLS Stack for
Secure Element

FE A —

RSA Private Key

| TLS Stack

JAVA VIRTUAL

MACHINE

.o

Pascal Urien

CLOUD RESOURCES

Get-KeysBlock
Get-CipherSuite

About Mobile Payments

US payment cards market
2011: 21 trillion S

16

Some Figures

According to the French national bank ("Banque de France"), the France gross domestic
product (GDP) was about 1900 billion € in 2013.

The global amount of financial transactions was about 27 000 billion €.

1,7% of these operations were performed with bank cards (leading to about 450 billion
€).

Nine billion of card transactions were performed in 2013, with an average value of 50€.

The number of payment cards in France was about 86 million, more than the
population.

In France in 2015 o
— About 0,025 billion of NFC payment operations 18000000
— 10 €in average 14 000 000
— 0,25 billion € 10000 000

— ’ 0 1
0,05 % of payment card transactions
6 000 000
\"‘\"\"‘\‘"‘(”\"‘(”\'{"‘(”\‘(”\‘"@
’ 44 s 41 ’ i ‘l s, s’ N 'c
Oé' OO bbo \té\ b& 6\’0“) %4 (00 \?\(‘ '\0\ @o\)

Pascal Urien 17

A\

About the EMV Payment Four Corner
Architecture

ACQUIRER Bank
Merchant Account

Merchant Bank
Payment Processor

Credit Card Network

ISSUER Bank
Card Issuer

iy CH| P
] N | =/ / Payment
g oy — = __.-' .
b@”"\%d / A terminal

EMV Gard, Ur;iea ___,f"'.

18

A typical EMV transaction comprises
five steps

1) Selection of the PPSE (Proximity Payment Systems Environment)
application, which gives the list of embedded payment EMV
applications identified by their AID.

2) Selection of an EMV payment application.

3) Reading of the application capacities, thanks to the GPO (Get
Processing Options) command, which also returned the structure of
embedded information organized according to a records/files scheme.

4) Reading of records and files via the ReadRecord command.
Certificates are checked and a DDA procedure may be used as non
cloning proof.

5) Generation of payment cryptograms, triggered by GenerateAC or
CDA commandes. Pascal Urien 19

Legacy EMV

According to iso7816 standards EMV applications are identified by
AID (Application IDentifier) attributes, 16 bytes at the most.

An EMV application embeds an index of a certification authority (such
as VISA or MasterCard), an issuer certificate signed by the CA, and an
ICC (integrated circuit card) certificate delivered (and signed) by the
issuer.

The ICC certificate authenticates most of information stored within
the EMV application (PAN, bearer's name, validity dates...), encoded
according to the ASN.1 syntax.

An ICC private RSA key is available and used for non cloning proof,
thanks to a dedicated command called DDA (Dynamic Data
Authentication), in which a 32 bits random is encrypted by the ICC
private key.

Pascal Urien 20

Legacy EMV

* Financial transactions are associated with cryptogam
generation based on symmetric 3xDES cryptographic
algorithm.

* One or two dedicated commands (GenerateAC) are
required by a payment operation, whose input
parameters include, among others, the amount and the
date.

DDA and GenerateAC may be combined in a single
procedure called CDA (Combined Dynamic
Authentication).

Pascal Urien 21

EMV ISO7816 main commands

EMV Binary (hexadecimal) Encoding
Iso7816 request CLAINS P1 P2 P3
SELECT AID 00 A4 04 00 P3=AID-length AID

GetProcessingOptions

80 A8 00 00 P3=parameters-length

ReadRecord 00 B2 P1 P2 00
P1l=record number
(P2-4)/8 = file number (FSI)
GenerateAC 80 AE P1 00 P3=parameters length

P1=type of cryptogram

Pascal Urien 22

PayPass Mag Stripe (PMS)

PMS is an adaptation of EMV standards to magnetic stripe.
It generates a dynamic Card Validation Code (named CVC3).
A PayPass transaction comprises the five following operations:

1) Selection of the PPSE application.
2) Selection of the PayPass application.
3) Issuance of the GPO command.

4) Reading of the record one, file one, which contains the trackl and track 2
equivalent data

5) Issuance of the Compute Cryptographic Checksum (CCC) iso7816 request,
including an unpredictable number. The PayPass application returns the CVC3
value.

Contrary to EMV the PMS profile does not embed certificates or RSA private
key. Thanks to CVC3 it is compatible with legacy magnetic card networks.

Pascal Urien 23

Customer’s

Google Card Not Present transaction (CNP) lssuer Bank
Acquirer /_(W\
Google Card
Issuer Network if |
Customer'’s

Cards

Google

Google
Virtual "
prepaid [EE==.
card |

7~

\ nel
4

Cloud of PVC

Bank Cards

asterCar PoYpass
MasterCard SN

Google PrePaid Card Transaction

// SELECT 2PAY.SYS.DDFO01
>> (00A404000E325041592E5359532E4444463031

<< 6F2C840E325041592E5359532E4444463031A51ABF0C1761154F10A000000004
1010AA54303200FFO1FFFF8701019000

6F File Control Information (FCI) Template
84 Dedicated File (DF) Name
325041592E5359532E4444463031
A5 File Control Information (FCI) Proprietary Template
BFOC File Control Information (FCI) Issuer Discretionary Data
61 Application Template
4F Application Identifier (AID) — card

A0000000041010AA54303200FFO1FFFF
87 Application Priority Indicator
01

Pascal Urien

25

Google PrePaid Card Transaction

// Select MasterCard Google Prepaid Card

>> 00A4040010A0000000041010AA54303200FFO1FFFF
<<

6F208410A0000000041010AA54303200FFO1FFFFAS50C500A4D617374657243617

2649000

6F File Control Information (FCI) Template
84 Dedicated File (DF) Name
A0000000041010AA54303200FFO1FFFF
A5 File Control Information (FCI) Proprietary Template
50 Application Label
MasterCard

Pascal Urien

26

// Get Processing Options

>> 80A80000028300 Goo g | e PrePai d
<< 770A 8202 0000 9404 08010100 9 000
AIP=0000 AFl= 08010100 Ca rd Tra nsact | on

// Reader Record one File one Track 1 data

>>(00B2010C00

<< 706A9F6C0200019F62060000000000389F63060000000003C64 5629 235343330
3939393930393937393939395E202F5E31373131313031303031303030303030
303030309F6401049F650200389F660203C6 9F6B13 5430 999909979999 D 17111
01 0010000000000F 9F670104 9000 Track 2 data PAN= 999909979999

Validity Date= 1711
// COMPUTE Cryptographic Checksum (CVC3)

>> 802A8E8004 00000080
<< 770F9F6102 0038 9F6002 0038 9F3602 0012 9000
CVC3 Track 2 CVC3 Track 1 ATC

Pascal Urien 27

VISA MSD

VISA VCPS (Visa Contactless Payment Specification) MSD (Magnetic Stripe Data),
is an adaptation of EMV standards to magnetic stripe for contactless payments.

It generates a dynamic Card Verification Value (dCVV, a three digits code) based
on a 3xDES (112 bits) secret key.

A VISA MSD transaction comprises the four following operations:
— 1) Selection of the PPSE application.
— 2) Selection of the VISA MSD application.
— 3) Sending of the GPO command with payment attributes (amount, date...).

— 4) Reading of the record one, file one, which contains the track 2 equivalent data.
This file includes a dCVV computed after the previous GPO.

Contrary to EMV the VISA MSD profile does not embedded certificate or RSA
private key. Thanks to dCVV it is compatible with legacy magnetic card networks.

Pascal Urien 28

Apple Pay

Select PPSE
00A404000E 325041592E5359532E4444463031
6F 23 [...] 9000
6F File Control Information (FCI) Template
84 Dedicated File (DF) Name
325041592E5359532E4444463031
A5 File Control Information (FCI) Proprietary Template
BFOC File Control Information (FCI) Issuer Discretionary Data
61 Application Template
4F Application Identifier (AID) — card
A0000000031010
87 Application Priority Indicator
01

Pascal Urien

29

Apple Pay

Select VISA MSD
00A4040007 A0000000031010
6F 39 [...] 9000
6F File Control Information (FCI) Template
84 Dedicated File (DF) Name
A0000000031010
A5 File Control Information (FCI) Proprietary Template
9F38 Processing Options Data Object List (PDOL)
9F6604 9F0206 9F0306 9F1A02 9505 5F2A02 9A03 9C01 9F3704 9F4E14
BFOC File Control Information (FCl) Issuer Discretionary Data
9F4D Log Entry
1401
9F5A Unknown tag
1108400840

Pascal Urien

30

Apple Pay

GPO
80 A8000037 8335]...]

8335
86 00 00 80
00 00 00 00 00 01
00 00 00 00 00 00
04 80
00 00 00 00 00
04 80
1408 18
01
4A 94 57 1A
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

80 06 00 80 08 01 01 00 9000
AIP = 0080, MSD mode
AFL = 08010100, one record one file

Pascal Urien

31

Apple Pay

//Read Record 1 file 1
00 B2 010C 00

701A 5713 4071231311223344D200320100000509 0002 5F 5F 20
02 20 2F 90 00

70 EMV Proprietary Template
57 Track 2 Equivalent Data DAN dCVV

407123131122334 4D 2003 201 0 0000 509 00025 F
5F20 Cardholder Name

/

Pascal Urien 32

/ISelect PPSE E M V
00A404000E325041592E5359532E444446303100

6F23840E325041592E5359532E4444463031A511BFOCOE610C4F07A00000000
410108701019000

6F File Control Information (FCI) Template
84 Dedicated File (DF) Name
325041592E5359532E4444463031
A5 File Control Information (FCI) Proprietary Template
BFOC File Control Information (FCI) Issuer Discretionary Data
61 Application Template
4F Application Identifier (AID) — card
A0000000041010
87 Application Priority Indicator
01

Pascal Urien 33

EMV

/| Select Master Card
>> 00A4040007A000000004101000

<< 6F388407A0000000041010A52D500A4D6173746572436172648701015F2D0266
/29F1101019F120A4D617374657263617264BFOC059F4D020B0OA9000

Pascal Urien 34

6F File Control Information (FCI) Template
84 Dedicated File (DF) Name E MV
A0000000041010
A5 File Control Information (FCI) Proprietary Template
50 Application Label
MasterCard
87 Application Priority Indicator
01
5F2D Language Preference
fr
OF11 Issuer Code Table Index
01
9F12 Application Preferred Name
Mastercard
BFOC File Control Information (FCI) Issuer Discretionary Data
9F4D Log Entry
OB®#Aal Urien 35

GPO
80A8000002830000
/7716 8202 1980 9410 08010100100101011801020020010100 9000 E M V

77 Response Message Template Format 2
82 Application Interchange Profile
94 Application File Locator (AFL)

82 (AIP - Application Interchange Profile)
1000 (Byte 1 Bit 5) Cardholder verification is supported
0800 (Byte 1 Bit 4) Terminal risk management is to be performed
0100 (Byte 1 Bit 1) CDA supported
0080 (Byte 2 Bit 8) EMV and Magstripe Modes Supported

94 (AFL - Application File Locator)
List of records that should be read by the terminal.
Each record is identified by the pair (SFI - short file indicator, record number)
SFI 1 record 1, SFI 2 record 1, SRL3.reeerds 1-2, SFl 4 record 1 36

Pl1=record number, (P2-4)/8 = file number (SFI) E MV

/l read record 1, file 1 Re CO rdS

00B2010C 00]
and Files

Reading

/l read record 1, file 2
0O0B20114 00

/l read record 1, file 3
0O0B2011C 00

/| Read record 2, file 1
00B202 1C 00

/| Read record 1 file 4
00B20124 00

Pascal Urien 37

file 2
* B record 1

¥ © Application Data File (ADF) 70

O Certificate Authority Public Key Index (PKI) 5F

O Issuer PK Exponent 9F32

0 Issuer PK Remainder 52

0 Issuer PK Certificate 90

v [record 2
¥ O Application Data File {ADF) 70
© Signed Static Application Data 93
file 4
* B record 1
¥ O Application Data File {ADF) 70

O ICC Public Key Certificate 9F40

O ICC Public Key Exponent 5F47

EMV Certificate Chain
1

1 03h

% A0ZE5A9BCO502 AF3538E16AE4DA540BC517560170B84AEASASEFDEF4AE347E2 3
03914237h
430F535DE0E7O8CEE50F615FC440414008760C4CEDO16586ADE3 6ASETF3I53ELF4
1FZBOCAFSCA0036BC2C2F74E15COCCEEDA032B486A0A065ADA440051CDE48774

176 E5544F4E174A29B1904F7ELCTS066944EE370C0OCTOD3C1CIE36067606851FDO0EL
594C3E7513 452 ACFEART2E1422EATFC30759F3 AEE482FES97C952C5E711F2501
(48 bytes follow...Jh

3

1 FFh

154
AECESZAGE77412CDCFFE14DEL1B072000DEACFEL4C2 ASDE1CF3I65741F066138CE
BOGOZDAAZ1377A0ABDEBOOAEOE4F23ERE7EEAE312800B46FCCEL261202D4D52E00

176 ©963685BZAIFETEI0SD04FE165ED72CEORTAAIAN4054ER3 71762 1D53DF7C2C208
30B12414DE6240D5D52D501C1D009835E013244F383C1F80159944E37A46610F
(48 bytes fallow... T

Pascal Urien
1 03h 38

/Il P1= Generate TC (01xx) + CDA signature Request (xxx1)= 50
80AE50002B 0000000006290 000000000000 250 0000000000 0978 150610 00 90B4
EOD2 25 0000 0000000000000000 1F0302 00

000000000690 Amount

000000000000 Cashback E M V
250 Country Code

0000000000 Terminal Verfication Result

0978 Currency code

150610 Transaction Date

00 Transaction Type

90B4E0D2 Unpredictable Number

25 Terminal type

0000 Data Authentication Code
0000000000000000 ICC Dynamic Number

1F0302 Cardholder Verification Method
00 LE

//[CDOL1 tag 8C
9F0206 9F0306 9F1A02 9505 5F2A02 9A03 9CA1 9F3704 9F3501 9F4502 9F4CO08 9F349§

rien

/778191

9F27 01 80 Cryptogram Information Data
9F36 02 001F Application Transaction Counter
9F4B 70 Signed Dynamic Application Data

OE92DE44738A7C5533D5E29A7A6D230A
OE2123F3EE1DCD83C868551D4F01C1D2
4979BBAA978F95589731C1CA73DAY7DD
80E3B49D/BOCEA3B4CFE711D021DA8F9
4BE408C44EF614EBSF150FDDFEGDASCS
920E041F8401E3DEOD313EB15DC/7C6C9
DCDO0279F4EF450D39F8CA12361065124

9F10 12 Issuer Application Data (optionnal)
OF10
A04003223000000000000000000000FF

9000 Pascal Urien

EMV
CDA

40

- Signed Data Format : E M V

| ec e9 3c d4 a0 80 34 c8 TC

|
: 01 Hash Algorithm Indicator :
| 26 ICC Dynamic Data Length (LDD) : C DA
| 08 ICC Dynamic Number Length !
1 al bb 29 ce d6 89 95 7c ICC Dynamic Number :
| 80 Cryptogram Information Data !
|

' 09 a1 86 bd eb 56 60 ba 15 b2 b2 8d 9f 1c b2 e4 74 a6 8d 8¢ |
I Transaction Data Hash Code

bb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb Padding

154fb6d9d774t5e6f7eef512b557eaf754c9¢c8f3bc Signature

Pascal Urien 41

signature= 154fb6d9d774f5e6f7eef512b557eaf754c9c8f3bc =shal E MV
{ 05012608al1bb29ced689957¢80

|| ece93cd4a08034c8 __ _ _ _____________ | CDA
_____________________________ [

|| 49 x bb (49 = 0x70 - 0x26 - 25)
|| 90B4EOD2 } // Unpredictable Number

Transaction Data Hash code = hash of

-The values of the data elements specified by, and in the order they appear in
the PDOL, and sent by the terminal in the GET PROCESSING OPTIONS
command

- The values of the data elements specified by, and in the order they appear in
the CDOL1, and sent by the terminal in the first GENERATE AC command.

- The tags, lengths, and values of the data elements returned by the ICC in the
response to the GENERATE AC command in the order they are returned, with
the exception of the Signed Dynamice@pplication Data. 42

EMV
CDA

Transaction Data Hash code= shal (
0000000006290000000000000250000000000009781506100090B4E0D2220000000
00000000000001F0302
|| 9F27 01 80
|| 9F36 02 001F
|| 9F10 12 OF10A04003223000000000000000000000FF)
=09 al 86 bd eb 56 60 ba 15 b2 b2 8d 9f 1c b2 e4 74 a6 8d 8c

Pascal Urien 43

The SIMulation Project

44

- Pas lUFien :

Scope

Remote use of Secure Elements hosted in the
Cloud through secure TLS channel

RACS
TLSEB¢)
TCP

IP

Pascal Urien 46

Architecture

* Four Components

— Legacy payment terminal
— Android Mobile

* Host Card Emulation
 Mobile API for SIM interface

— SIM card
* Delivering a TLS stack

— Payment servers
* Built over RACS server and legacy payment card

Pascal Urien

47

RACS

I E T ¥ racs.com.port %

: s TLSSE
HCE VirtualCard| AP JD/B
c eETHER
(A 1D) 8 TRUST At

HCE-SIN " [—1{Mobile API - @

B simalliance

=
-+

| set tls.cqp (javgcard)
racs.com:port MobileAPI files

asSRI6kn 48

Config

RACS

The idea is to put secure elements in the Cloud
RACS works over TLS

Splitting between Access Control (authorization) and Services

— The risks (Fraud...) are managed in two separate plans (access and
service)

— Remote resources are monitored

Giving an identifier to a secure element in the cloud
— A WEB of Secure Elements
— RACS://Server.com:Port/SEID

Pascal Urien

49

Introducing RACS

The RACS protocol is in the perspective of
these former experiments.

It has been designed for efficient and
secure remote use of secure elements via
the internet.

It also provides smartcard readers
virtualization, and therefore facilitates
secure elements deployment in
environments dealing with virtual
machines and cloud computing.

Pascal Urien

1SO7816
APDU

TLS

TCP

IP

50

RACS Uniform Resource Identifier

RACS setups a secure (TLS) connection with a remote server, it
collects the list of hosted secure elements, and thereafter it powers
on a secure element, resets the device and exchanges APDU
requests and responses.

RACS defines an URI (Uniform Resource Identifier), such as
* ServerName:Port/SEID

It comprises the server name or IP address, the TCP port and a SE
identifier (the SEID).

Therefore it creates a concept somewhat similar to a WEB of secure
elements, or a WEB of cryptographic procedures.

Pascal Urien 51

A PKI Infrastructure

* |n order to perform strong mutual authentication both
RACS client and server are equipped with X509
certificates, dealing with asymmetric cryptography
(RSA or elliptic curves).

 The client SUBJECT attribute, more precisely the
Common Name (CN) field of this attribute identifies a
legitimate client, and is associated within the server to
an index UID, the user identifier.

Pascal Urien 52

Key Diversification Data

Tx:
Rx:
Tx:
Rx:
Tx:
Rx:

00

04

How to
allocate

! R it : !
o 1c key diversification data S E I D
52_00 09 D7 98_8C_3E,0l 01 BE B4

00 08|A0 00 00 00 18 43 4D 00'

______________________ 1
ISD
00 08 29 23 BE 84 ELl 6C D6 AE

B3 65 2C 3F F4 9B EA B7 8E 88 13

Reader Serial Number

SIM-Server SlotID

SCR3310 Smart0se powered

Key Diversification Data

4D0080
520009

Serial
Number

DN

S/N:21120548219311 e®. D7988C
vt someal E:] st 3E
FOR HOME OR OFFICE USE E198137 .
Made in Singapore === 5V-100mA) 4

725 53

RACS Commands

Command SEID Comment

BEGIN no First request command

END no Last Request command

GET-VERSION no Return current version

SET-VERSION no Set current version

ECHO no Request the server to perform an echo

LIST no Return the list of authorized secure
elements

SHUTDOWN yes Shutdown a secure element

POWERON yes Power on a secure element

RESET yes Reset a secure element

APDU yes Perform an ISO7816 request

Pascal Urien

54

RACS Requests and Responses

BEGIN MyvlLabel
GET-VERSION APPEND
LIST APPEND

POWERON MySEID APPEND
RESET MySEID

APDU MySEID
00A40400074A544553543030
END

BEGIN MyLabel

+002 001 0.2

+004 002 MySEID OtherSEID
+008 003 MySEID 1s powered on
+005 004 MySEID resetted

+006 005 9000

END

w5 L e
"...,'W

[

Y BCPU/

RAM

EERROM

LIST

POWERON
SHUTDOWN

55

(o N O) T S O O T 8 I

0 =] &y 0

= e = e =
o I S VI S T = T

u

BODY = emptv; APDU
SW = empty;
DoIt = true;
Do
{ iso78loc—response = send(isoT7B8leé—-regquest); Command
body || swl || swZ2 = isoT7B8lé—response;
IF ((first request) &&
(iso78lé—regquest.size==5) && ° NO Script |
body=—empty) && (swl==&C)) *
{ iso78lé—-request.P2 = sw2 ; }
ELSE
{ SW = =swl || =swZ
BODY = BODY || body;
IF (swl == MOEE)
{ isco78le-reguest = FETCH || sw2 ; 1}
ELSE
{ DoIt=fal=se;}
}
}
While (DoIt == true)
iso7B8leé—response = BODY || SW ;
IF (SW != CONTINUE) Error ;
ELSE No BEXrogleéal urien 56

Security Policy

Only users equipped with valid certificates successfully establish TLS
sessions.

A user identifier (UID) is derived from the certificate Common Name (CN)
attribute.

A TLS session is identified by a unique identifier (the SID).

Every secure element has two states, unlocked and locked.

— The SHUTDOWN command forces the unlocked state; the POWERON
command switches the SE state from locked to unlocked.

— In the locked state the SE may be only used by the SID that previously locked
it.

At the end of a TLS session all used SEs are unpowered and unlocked.

Pascal Urien 57

SEID Locking

Unlocked Locked(SID)
Power Off Power On
POWERON(SID) POWERON
> (Other-SID)

SHUTDOWN(AII-SID)

‘ DENIED
END Of TLS SESSION(SID) O

Access Control

* The server manages two kinds of table:

— The Users-Table stores for each CN a list of
authorized SEIDs.

— Each SEID is linked to a SEID-Table storing for
every AID (embedded application) a list of
authorized CNs.

59

Filter " ‘Eifter 60

for reader# 000,

for reader# 001,
CardsN=

.
S clo,
dem, for reader# 001,

home, for reader#® 002

BEID— et , for readexr® O
SEID= paycard, for reac
SSL. server re

Vendor: SCM Microsystems Inc.
SDI010 Contactless Reader

60

o6 07
86 FC
o2 01
o2 S0
3 BE

Experimental

Platform

L —d

i —

61

SEID files

21120548219311 obelix
21120837203028 pavycard

"SCR3310 Reader"
"CardMan 5bxZ21-CL"

Reader.txt file ReaderSN.txt file

/S /WENEO

3BF21800008031FE4580574E454F574156457D A000000003000000
S /eX40

IB7D96000080218065BR08311C0C883009000 AQ000000018434D0O0

ATR.txt File

4DO0B0520009FC99BC3E muscle
00002303007132964029 asterix

CardSN.txt File

Pascal Urien 62

Access Control Files

bob 2 obelix pavcard
alice 2 asterix muscle
admin 4 obelix asterix muscle pavcard

Users.txt file

AO000000003000000 no 1 admin

AQOOOQOOOODO10O1 no 2 bob alice:filter.txt
default no 1 admin
SEID.txt file
// The filter.txt file
Y4 Mask APDU—Prefix
FFFFOOOO A0Z200000
O0OFFOO000 0O0D80O0O0O0

Filtessdktitte

63

The Open MobileAP]

The API defines a generic framework for the access to Secure Elements in a mobile environment. It is
based on four main objects.

The SEService is the abstract representation of all SEs that are available for applications running in the
mobile phone.

* SEService seService = new SEService(this,this)

* public void serviceConnected(SEService service)

* seService.shutdown()
The Reader is the logical interface with a Secure Element. It is an abstraction from electronics devices
which are needed for contact (ISO 7816) and contactless (ISO 14443) smartcards.

* Reader[] readers = seService.getReaders()
The Session is opened and closed with a Reader. It establishes the logical path with the SE managed by
the Reader.

* Session session = readers[0].openSession()

* session.close() or readers[0].closeSessions()
The Channel is associated with an application running in the SE and identified by an ID (the AID=
Application IDentifier)

* Channel channel = session.openlLogicalChannel(aid)

* byte[] response channel.transmit(byte[] command)

* channel.close()

Pascal Urien 64

OpenMobileAPI: The SIM File System

ME (3F00)
| -EF-DIR (2F00) --> reference to DF-PKCS#15

|
| -DF-PKCS Access Control Main File #15 (7F50)

| -ODEF (5031) -—> reference to DODF

| -DODF (5207) -——> reference to EF-ACMain

| -EF-ACMain (4200) -—> reference to EF-ACRules

| -EF-ACRules (4300) -—> reference to EF-ACConditions

| -EF-ACConditionsl (4310)
| -EF-ACConditions2 (4311)
| -EF-ACConditions3 (4312)

Pascal Urien 65

EF-ACRules

30 10
A0 08 // aid
04 06
A0 00 00 01 51 01 // Application Identifier (AID)
30 04
04 02
43 10 // EF-ACCondition File
30 10 A0 08 04 06 A0 00 00 01 51 02 30 04 04 02 43 11
30 10 A0 08 04 06 A0 00 00 01 51 03 30 04 04 02 43 11
30 08
82 00 // other
30 04
04 02
43 12 // file
FF FF FEF 90 00

Pascal Urien

66

No access to any application

Tx: 00 A4 00 04 02 43 10 // Select AC-Conditions1
Rx: 61 20

Tx: 00 CO 0000 12
Rx: 62 1E82 024121830243 10A506 C00100DEO0100610E

Tx: 00 BO 00 00 00 // Read AC-Conditions1 - empty file, no access to any application
Rx: 6C 1E

Tx: 00 BO 00 00 1E

Rx: FF
FF 90 00

Pascal Urien 67

Access to a single application

Tx: 00 A4 00 04 02 43 11 // Select AC-Conditions2
Rx: 61 20
Tx: 00 CO 00 00 20
Rx: 62 1E8202412183024311A506C00100DEO1008A01
05 8B 03 6F 06 02 8002 00 1E 88 00 90 00
Tx: 00 BO 00 00 00 // Read AC-Conditions2,
Rx: 6C 1E
Tx: 00 BO 00 00 1E
Rx: 30 16

04 14

111111111111111111111111111111 1111111111

// CertHash

FF FF FF FF FF FF 90 00 Pascal Urien

68

Access by any application

Tx: 00 A4 0004 024312 //Select AC-Conditions3
Rx: 61 20
Tx: 00 CO 00 00 20
Rx: 62 1E8202412183024312A506C00100DEO1008A0105 8B
03 6F06028002001E88009000
Tx: 00 BO 00 00 00 // Read AC-Conditions3, access by any application
Rx: 6C 1E
Tx: 00 BO0O0O 00 1E
Rx: 30 00 // empty condition entry,
FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF
90 00

Pascal Urien

69

Host Card Emulation

<« . Mobile API

MIW \\, SIM e
—a ii;"(:‘ =
LEGACY e Google Nexus S
|
Host Card Emulation

Pascal Urien 70

HCE Service

<service
android:name=".MyHostApduService"
android:exported="true"
android:permission="android.permission.BIND NFC SERVICE" >
<intent-filter>
<action android:name="android.nfc.cardemulation.action.HOST APDU SERVICE" />
</intent-filter>
<meta-data
android:name="android.nfc.cardemulation.host apdu service"
android:resource="@xml/apduservice" />
</service>

Pascal Urien 71

HCE Service

<host-apdu-service
xmlns:android= "http://schemas.android.com/apk/res/android"
android:description="@string/servicedesc"
android:requireDeviceUnlock="false" >
<aid-group
android:category="other"
android:description="@string/aiddescription”™ >
<aid-filter android:name= "325041592E5359532E4444463031" />
<aid-filter android:name= "a0000000041010aa54303200££f01£f£££f" />
</aid-group>
</host-apdu-service>

The HCE service implements two methods for NFC communication:

- public byte[] processCommandApdu (byte[] apdu, Bundle extras).

- public void sendResponseApdu (byte[] responseAPDU).

Pascal Urien

72

Selection of
a bank card

@) racs.dyndns.org:443/pay...

User’s Experience

Connection Ready for Fidelity Card Payment
to server payment Reading Transaction

Sl

@l /racs.dyndns.org:443/paycard @ J /racs.dyndns.org:443/paycard

orange |

[Q:g'l /racs.dyndns.org:443/paycard

Connecting to server...

CCCCCC

Pascal Urien

About Virtual Fldellty Cards

e Avirtual fidelity card is associated
with an application AID registered | |
with the payment application. Fldelity Card#1

* The merchant terminal selects
this virtual card (via the dedicated
is07816 SELECT command) before
the transaction.

e The returned information
includes a card number to which
the payment would be bound.

Pascal Urien

Legacy Timing

* Alegacy contactless transaction consumes about 400mes,
and requires 8 ISO7816 requests, which are detailed below:

— Selection of the PPSE application.
— Selection of the NFC payment application.
— Issuance of the GPO command.

— Four ReadRecord commands used for collecting four files
located in two records.

— One GenerateAC request, realizing a CDA operation.

* About 50% of the transaction time (200 ms) is consumed by
the CDA computing.

Pascal Urien 75

Transparent
Mode

Connecting to server...

RACS Script
== §executed
after the
connection
to the server

Connecting to myracs. dyndns org

TERMINAL T ———

)
BEGIN ResetScript
SHUTDOWN SEID
POWERON SEID
END

Pascal Llrien

RACS Script

BEGIN APDUScript
APDU
> END

~

v

RACS Server

Transparent Mode

* |n the transparent mode every iso7816
request is forwarded to the server

e What leads to an extra time cost of about
250ms (in average) per APDU

 Total duration is about 8x250+400= 2400m:s.

77

/0 == = o ==

RACS Script executed

|

1 READ-RECORD(s) BEGIN CdaScript
APDU [GPO]

—>APDU [GENERATE-AC]

END

TERMI.NAL | SELECT PPSE : for cryptographic
 SELECT AID | (CDA) computin
| GPO - puting

:
|

_ GENERATE-AC

Cache)
RACS Server
Mode
- RACS Script BEGIN ResetScript\
executed SHUTDOWN SEID
after the POWERON SEID
S connection SELECT SEID AID
to the server | ENDerascal urien

Cache Mode

The mobile application manages a cache; the seven first iso7816 requests,
which return static information, are locally processed by the smartphone.

Each operation needs about 30ms; therefore seven APDUs cost 210ms,
which is nearly equivalent to the legacy transaction.

The last request (GenerateAC) is forwarded to the remote server, which
implies a delay ranging between 350 and 650 ms, according to the
following repartition:

— 200 ms are burnt by the remote CDA operation

— 100-250 ms are spent by the platform components (mobile phone, server
operating system and network components)

— 50-200 ms are consumed by the latency of 3G/4G cellular network.
Total: 560-860ms

Pascal Urien 79

Part Il — Secure Elements For
Object

80

About the Internet of Things (loT)

* Pretz, K. (2013). “The Next Evolution of the
Internet”

The Internet of Things (loT) Is a
network of connected things.

81

Beyond The Horizon

The loT is the death of the Moore Law.

Waldrop M. "More Than Moore", Nature February 2016
Vol 530

— The semiconductor industry will soon abandon its pursuit of
Moore’s Law.

"Rebooting the IT Revolution: A Call to Action" (SIA/SRC),
2015

— "Security is projected to become an even bigger challenge in the
future as the number of interconnected devices increases... In
fact, the Internet of Things can be viewed as the largest and

most poorly defended cyber attack surface conceived by
mankind"

Pascal Urien 82

Trillion Sensors

*W= 1 Ng X V
g=1,6 1019
1014 J == 125,000 electrons

* |n current mainstream systems, the lower-edge
system-level energy per one bit *transition is ~10-14
J, which is referred as the "benchmark”.

100,000,000,000,000

10,000,000,000,000

1,000,000,000,000

Trillion Sensor Visions

-

i’ 4

Towards
Cyber]
Physical g
Systems “
(CPS)

Pascal Urien

Internet Of Things

JSON (JavaScript Object Notation) Communication
is a lightweight, text-based, Stack
language-independent data
interchange format

JSON Schema
JSON Data Interchange Format
REST protocol

Application

Framework Electronics

Board

Pascal Urien 84

Operating
System

EXAMPLE 1: NEST

Pascal Urien

Step 15 Edit %

® With all of the /O connections on the back, the
main motherboard houses all of its important
ICs on the front:

Texas Instruments AM3703CUS Sitara
ARM Cortex A8 microprocessor

Texas Instruments TPS65921B power
management and USB single chip

Samsung K4X51163PK 512 Mb mobile
DRAM

Ember EM357 integrated ZigBee/802.15.4
system-on-chip

Micron MT29F2G16ABBEAH4 2 Gb
NAND flash memory

Skyworks 2436L high power 2.4 GHz
802.15.4 front-end module

And under that last EMI shield: Texas
Instruments WL1270B 802.11 b/g/n Wi-Fi
solution, just like the one we found in the 85
Kindle Fire

https://www.threadgroup.org

Thread Standard
DTLS + J-PAKE

Authentification

Application Layer

J-PAKE is a password-

: UDP + DTLS RFC 768, RFC 6347, RFC
authenticated key exchange 4279, RFC 4492, RFC 3315,
(PAKE) with “juggling” (hence — _ RFC 5007
the “J” Distance Vector Routing

e"J). . RFC 1058, RFC 2080
It essentially uses elliptic IPv6
curve Diffie-Hellmann for key RFC 4944, RFC 4862, RFC

6LowWPAN 6282, RFC 6775

agreement and Schnorr

signatures as a NIZK (Non- ~ |IEEE 802.15.4 MAC
Interactive Zero-Knowledge) ki iiiaihanii s

proof mechanism Physical Radio (PHY)

IEEE 802.15.4 (2006)

QcC
OV

Commissioner

Border
Router

Commissioner Candidate
initiates authentication

Commissioner Candidate
starts DTLS handshake in
respon se to request from
Border Router including
cookia

Commissioner Candidate
and Border Router share a
pair-wise key

DTLS handshake is finished.

External Commissioner
keeps secure
Commissioning Session
open using keep-alive
messages

DTLS:HelloVerifyRequest |

DTLS:ClientHello {with cookie)

verHello
DTLS: ServerkeyExchange
DTLS: ServerHelloDone

DTLS: ClientKeyExchange
DTLS:ChangeCipherSpec
DTLS:Finished

DTLS:ChangeCipherSpec
DTLS:Finished

Border Router should retain
Iitle or no state regarding
the initiation and sends the
\ cookie back

Leader

" | DTLS handshake
phase

DTLS application

»| Data phase

| LEAD_KA.sp

87

6LoWPAN deals with IPv6 and
Mesh networks

— O
IEEE 802.15.4 omw i o e
MAC Frame Size 127 Bytes o] \.
IpV6 header 40 Bytes o /. e
TCP header 20 Bytes J ‘/] 5
PN
O O
@ Coordinator
@ Router

: QO End Device
RS HAWPAN 88

IEEE 802.15.4

e Coordinator is assumed to be the Trust Center (TC) and
provides

— Cryptographic key establishment /'O
— Key transport O .\

— Frame protection / I
— Device management o0 """-*.t/'.
e Cryptographic Keys f/ \ /
— Master, basis for long term security used for symmetric g O
key establishment. It is used to keep confidential the LinI3 \ ¢
) O

Keys exchange between two nodes in the Key
Establishment Procedure (SKKE).

— Link, shared exclusively between two network peers for
Unicast communication.

— Network, used for broadcast communication security.
Pascal Urien 89

urity/(f.vl‘rm‘lls\u:rnwﬂ

THREAD BOARD

fHREAD Standard

Application Layer

RFC 768, RFC 6347, RFC 4279,
RFC 4492y RFC 3315, 5007

RFC 1058, RFC 2080

r
<
—

AR

RFC 4944, RFC 4862, RFC
6775

IEEE 802.15.4 MAC

(including MAC security)

IEEE 802.15.4 (2006)

IEEE 802.15.4 PHY IEEE 802.15.4 (2006)

Pascal Urien

SILICON LABS

http://www.silabs.com/

Mighty Gecko
e

Zpnrnemannn

YT

Example 2: Open Connectivity
Foundation (OCF)

91

https://openconnectivity.org/

The Open Connectivity Foundation sopicaion proes | Smert || Comected || g || automorve
(OCF) is creating a specification

and sponsoring an open source project to =

make th|s pOSSible. ID & Addressing Resource model CRUDN Messaging
The OCF sponsors the loTivity open — e @>

source project which includes a reference
implementation of our specification
available under the Apache 2.0 license.

Transport

Networking

L2 Connectivity

Figure 2: OIC functional block diagram

Create, Read, Update, Delete, Notify: CRUDN
Open Interconnect Consortium (OIC) Pascal Urien 92

IOTIVITY

https://www.iotivity.org/

Unified Block (UB) stack

Thin Block (TB) stack

Resource API Stack for UB

Application

lotivity Base (C++ SDK)

lotivity Base (C SDK)

CoAP HTTP Future Transport
(libcoap) (future) (future)
TCP/IP
UDP/IP Fut PAN
/ (future) uture

Resource API Stack
For Constrained Devices

Application

lotivity Base
(C SDK)

CoAP
(libcoap)

UDP/IP

loTivity is an open source software framework enabling seamless device-to-
device connectivity to address the emerging needs of the Internet of Things.
It supports multiple operating systems : Linux, Android, Tize, Arduino

Pascal Urien

93

Smartphone Bulb Interaction

Pascal Urien

Smartphone Bulb
(OIC Client) (OIC Server)
GET(oic/res)
Response (list{res uri, rt, if})
< ..
GET(/light)
PR oo it S n=bedlight
of=0
POST(/light, {of=1}) n=bedlight
of=1
F R—_— Success/ Failure |

94

CoAP /HTTP

¥ Y
\\.

= @

OIC Client]

[OIC Intermediary]

[OIC Server]

HTTP Request

CoAP Request

HTTP Response

CoAP Response

rt: Resource Type ID
iIf: Interface

CRUDN operation

Pascal Urien

{

. “Mygoom'rempera ture" .

"rt": "oic.r.temperature",

W Ewe Moyeiat o all
"id™: "temp TE3EI3N,
"Yunit": “Celcius",

“"Current value": 18,
RS ENVAENe S,

; y

Resource (representation)

95

Access Control List (ACL)

Server
Device 5

LENENEY

R | R1
Client | - acl{o]

Device SUDJECtZ D1

D1 Reply: [R1 Resource: R1
—
Permission: R

Figure 2 — Use case-1 showing simple MCLI enforcement

Pascal Urien

Secure Storage
It is strongly recommended that 0T device makers provide reasonable

protection for Sensitive Data so that it cannot be accessed by unauthorized
devices, groups or individuals for either malicious or benign purposes.

In addition, since Sensitive Data is often used for authentication and
encryption, it must maintain its integrity against intentional or accidental

alteration

Device Authentication with DTLS
Device Authentication with Symmetric Key Credentials
Device Authentication with Raw Asymmetric Key Credentials
Device Authentication with Certificates

Secure Boot
In order to ensure that all components of a device are operating properly and
have not been tampered with, it is best to ensure that the device is booted
properly. There may be multiple stages of boot. The end result is an
application running on top an operating system that takes advantage of
memory, CPU and peripherals thr&eghdtivers. 97

Internet IPv6 Sensor Network

Services Internet I PV4/ I PV6 ISS ue

Core

- -
- i >
’ N T y 4
i~ 0 |
- e o -
. S 4 12

IPv6 Local
Network

T oie
OIC aware Non-1Pv6 Network
T QIC plugged-in
Pasq _ w 98

Example 3. MBED

99

MBED stack from the ARM company

C++ APls

Event Framework
Device Management
0@ & 6= @

ﬁ Cortex®-M Sensors m

Bootstrap, Security, FOTA

ARM
Getting Started

c Plug your boards together
Connect them to a network with
internet access using
an Echernet cable

Connect them to your computer

using a USB cablle

Now, open IBM.htm to see
the data your board is reporting...
For help, visit mbed.org/IBMEthernetKit

Pascal Urien 100

loT Protocols

e HTTP (most of today IP objects)

— As an illustration some connected plugs work with the
HNAP (Home Network Administration Protocol) protocol
based on SOAP and used in CISCO routers. In 2014 HNAP

was infected by" The Moon".

 MQTT protocol, is a Client Server publish/subscribe
messaging transport protocol that is secured by
TLS.

Pascal Urien 101

CoAP, RFC 7252

CoAP (Constrained Application Protocol) , RFC 7252 is designed according to
the Representational State Transfer (REST) architecture , which encompasses
the following six features:

— 1) Client-Server architecture;

— 2) Stateless interaction;

— 3) Cache operation on the client side;
— 4) Uniform interface ;

— 5) Layered system ;

— 6) Code On Demand.

CoAP is an efficient RESTfull protocol easy to proxy to/from HTTP, but which is
not understood in an loT context as a general replacement of HTTP.

— Itis natively secured by DTLS (the datagram adaptation of TLS), and works over a
DTLS/UDP/IP stack. Nerveless the IETF is currently working on a CoAP version
compatible with a TLS/TCP/IP stack.

Pascal Urien 102

012345 6[70[1 23456 70[12)34)5670 1 2|34

COAP V | T | TKL Code Message ID

Token (if any)

DEtalls Options (if any)

11111111 Payload (if any)

Version (V): protocol version (01).

Type (T) message type :
Confirmable (CON), Non-confirmable (NON), Acknowledgement (ACK) or Reset.

Token Length (TKL)/ is the length of the Token field (0-8 bytes).

The Code field: identifies the method and is split in two parts a 3-bit class and a 5-bit detail
documented as "c.dd" where "c" is a digit from O to 7 and "dd" are two digits from 00 to 31.
0.01 GET, 0.02 POST, 0.03 PUT and 0.04 DELETE.

Message ID: matches messages ACK/Reset to messages CON/NON previously sent.

The Token (0 to 8 bytes): is used to match a response with a request.

Options: give additional information such as Content-Format dealing with proxy operations.

Pascal Urien 103

LWM2M

LWM2M

Objects
CoAP
¥
DTLS
SMS
SMS on-
UDP on- Smartcard
device

LWVWMZ2M Server

Interfaces

Bootstrap -

Client Registration -
Device Management &
Service Enablement -
Information Reporting -

Stack

- Efficient Payload

- CoAP Protocol

- DTLS Security

- UDP or SMS Bearer

Oy [

Objects

M2M Device

LWM2M (Lightweight Machine to Machine Technical Specification) is a framework based on CoAP dealing with
objects hosted by LWM2M clients and communicating with LWM2M servers

LWM2M manages the following interfaces
— Bootstrap

— Device management
— Information Reporting

Two transport mechainsm ("transport channel bindings”)

— UDP/IP
- SMS

Client Registration (with servers)

Pascal Urien

104

Example 4. Home Kit

Pascal Urien 105

HOME Kit (Apple)

HomekKit

HomeKit Accessory Protocol

Generic Attribute
Profile (GATT)

Attribute Protocol (ATT)

L2CAP

Bluetooth LE

Protocol Security

- End-to-end encryption

- Initial setup secured directly
between IOS and accessory
- Perfect forward secrecy

- Standard cryptography

The HAP (HomeKit
Accessory Protocol) initial
pairing exchange is based on
the Secure Remote Password
procedure (SRP, RFC 5054)
which deals with a 8 digits PIN
code available for every
accessory. 106

Example 5. Brillo & Weave

Pascal Urien 107

Brillo & Weave

Brillo is an OS from
Google for building

connected devices. Android HAL
= T 35MB Memory
- Kl % Footprint (minimum)

: i R

e
. ;

B

Hardware

3
i e F

OTA Upaates vweave [EE g R
~ANAiyucs
rerne

The Intel® Edison Board Made for Brillo.

Weave Local API Weave Cloud API
Weave is a communications protocol that
supports discovery, provisioning, and HTTPS mDNS
authentication so that devices can connect
and interact with one another, the Internet, WiFi
and your mobile platforms. Pascal Urien

Brillo and Weave

Weave is a communications platform for

loT devices Brillo is Simpler... Smaller...loT
- Device setup, phone-to-device-to-cloud Focused

communication - C/C++ environment

- User interaction from mobile devices and - Binder IPC No Java

the web Applications, framework, runtime
- Transports: 802.15.4 (zigbee, threads), -No Graphics

BLE, WiFi, Ethernet, Others possible - 35MB Memory Footprint

- Schema Driven (json) Associates Weave (minimum)

XMPP requests with application function

invocations

- Web apps may be written with Google*

API support

- OAuth 2.0 Authentication, Google as AS 109

Client

Client Hello (Client Random)

Server Hello (Server Random, SessionID)

Server CA
*Certificate 4 KPubS | JKPubCA
Certificate Request
ServerHelloDone

. Client
*Certificate |kPubcC
a

ClientKeyExchange {PreMasterSecret}Kpyps]
*CertificateVerify {MessagesDigest} Kprivc "
ChangeCipherSpec f
Encrypted Client Finished Message R

ChangeCipherSpec

Encrypted Server Finished Message

Encrypted and HMACed RECORD
Encrypted and HMACed RECORD

A

Sel

rver

Flight1

Flight2

Flight3

Client

About TLS

Client Hello (ClientRandom, SessionID)

Server Hello (ServerRandom, SessionID)

ChangeCipherSpec

Encrypted Server Finished Message

Encrypted Client Finished Message

ChangeCipherSpec

Encrypted and HMACed RECORD

Encrypted And HMACed RECORD

A

Pascal Urien

Server

Flight1

110

TLS/DTLS Security Modules

111

DTLS Client DTLS-Server

DTLS-Client Hello (Cient Random), 0,0,0 1 Highti
R DTLS-HelloVerifyRequest (cookie), 0,0,0 | Algh A b OoOuU t DT LS
| oris-lenttelio (Qlient Random, cookie, o4 T s
T DTS Sarver Helo (Server Rendorm, Sessionid), 10,1
Server CcA .
) DILS Certficate, 2,02 | Kb JIGbch The two first number
) DTLS-Certificate Request, 3,0,3 Right4)
- are respectively the
DTLS-ServerHelloDone, 4,0,4
TSI S record sequence
Client
abc] prs-certficate, 2,02 X number and the epoch
DTLS-ClientKeyExchange {PreMasterSecret }Kaws, 3,0,3 f| e | d]
DTLS-CertificateVerify {MessagesDigest} Kerve, 40,4 Flight5
DTS hengecinersbes 50 . The optional third
DTLS-Enaypted dient Finished Message, 0,1,5 .
,,,,,,,,,,,, e - .| number is the message
DTLS-ChangeCipherSpec, 5,0
. - . sequence used by a
) DTLS-Enaypted Server Finished Message, 0,1,5 Hights
— handshake message.
Encrypted and HMACGed RECORD, 1,1 .
) Encrypted and HMACed RECORD, 1,1 Pascal Urien 112

DTLS
cryptographic

According to finished messages (either client or server) have no .
sensitivity to fragmentation. There are computed as if each d eta | IS
handshake message had been sent as a single fragment, i.e.

with Fragment-Length set to Length, and Fragment-Offset set to

zero ; the Message-Sequence field is not used in these
procedures.

Handshake cryptographic calculations are insensitive to
fragmentation operations.

It also should be noticed that the DTLS-HelloVerifyRequest
message and the previous associated DTLS-ClientHello are not
taken into account by the Handshake cryptographic

calculation.

Pascal Urien 113

DTLS Handshake and Record Layer

Handshake Message

Tvpe 1B
Length 3B
Message Sequence 2B
Fragment Offset 3B
Fragment Length 3B
Total length 12B

Record Packet

Type 1B
Version 2B
Epoch 2B
Sequence Number 6B
Length 2B
Total Length 15B

Pascal Urien

114

About
EAP-
TLS

Client Server

EAP-Request-ldentity

<&

EAP-Response-ldentity

EAP-Request-EAP-TLS, Flags-Start
EAP-Response-EAP-TLS, Flags, TLS Flightl

A

EAP-Request-EAP-TLS, Flags, TLS Flight2

EAP-Response-EAP-TLS, Flags, TLS Flight3 TLS

EAP-Request-EAP-TLS, Flags, TLS Flight4 | Exchanges

<

EAP-Response-EAP-TLS, Flags

EAP-Success

A

PascatuTien 115

EAP-TLS Flags Field
Segmentation Reassembly Procedures

bO [bl | b2 | b3 [b4 | b5 | b6 | b7
L M | S R IR |R |R | R

- The L bit (length included) is set to indicate the presence of the four-
octet TLS flight length field, and is set for the first fragment of a
fragmented TLS message or set of messages.

- The M bit (more fragments) is set on all but the last fragment.

- The S bit (EAP-TLS start) is set in. an EAP-TLS Start message. 116

Client

EAP-DTLS

EAP-Request-EAP-TLS, Flags-Start

<

EAP-Response-EAP-TLS, Flags, DTLS Flightl

EAP-Request-EAP-TLS, Flags, DTLS Flight2

EAP-Response-EAP-TLS, Flags, DTLS Flight3

EAP-Request-EAP-TLS, Flags, DTLS Flight4
EAP-Response-EAP-TLS, Flags, DTLS FIigh}S
EAP-Request-EAP-TLS, Flags, DTLS Flight6

EAP-Response-EAP-TLS, Flags

n
>

Server

DTLS
Exchanges

EAP-Success

A

Pascal Urien

117

Client Server

|
) | _ _ _ . .
Encryption | :EAP Request-EAP-TLS, Flags, Application data :
: EAP-Response-EAP-TLS, Flags, Record Packet |
I _
Decryption 'EAP-Request-EAP-TLS, Flags, Record Packet

IéAP-Response-EAP-TLS, Flags, Application data

Pascal Urien 118

About Secure Elements

* Secure Elements are tamper resistant
microcontrollers, whose security is enforced by
multiple hardware and software countermeasures.

* Their security level is ranked by evaluations
performed according to the Common Criteria
standards, whose level range from one to seven.

* The chip area is typically 25mm? (5mm x 5mm). The
power consumption is low , as an illustration for SIM
module 1.8V-0,2 mA (3.6mw) in idle state and no
more than 1.8V-60mA (3108 mW) in pike act|V|ty

ascal Urien

About Secure Elements

Secure microcontrollers comprise a few hundred KB of ROM,
about one hundred KB of non volatile memory (E2PROM, Flash)
and a few KB of RAM.

Most of them include a Java Virtual Machine and therefore run
applications written in the Javacard language, a subset of the
java language.

A TLS/DTLS stack is an application, typically a javacard
application, stored and executed in a secure element. Its logical
interface is a set of APDUs exchanged over the 10 link.

We previously designed EAP-TLS smartcards, which compute
TLS flights encapsulated in EAP-TLS messages, until the

generation of server and client finished messages. 120

Illustration of (TLS) Encryption and
(DTLS) Decryption Operations

Process-EAP. tvpe=17h, 97h= 80h or 17h. pavload = 313233340D0A ("1234CrL1")
== A408000970C 0111000C 0DOO0 313233340D0A
Encrypted TL.S Record packet in EAP-Response
=< 0211002F 0DD8000000025
1703010020 1506B77D1F1F3514AS8E703CAEB2EFEFDO45A71E3F68
92AFO0CO9C79197F7C2EG6 2000

Process-EAP-Decrvpt

== 4080000043 01140043 0D0O0O 1SFFF00010000000000020030
6 B4A48869288953CD90D7BCDY9E947B93025C75SFEC1253
ES BOD998D1306A33D3612CDF91B230BCEGESSE1B19F39
18FA10

DTLS Record Clear Payload in EAP-Response= 0100h

= 021400C 03000000002 0100 2000

Pascal Urien 121

APPLIFTITION TLS SECURITY

MODULE
TLS d—

\/ EAP-TLS TR
PACKETS | |
TLS SACKET E2PRON
EAP-TLS - BRI
BRIDGE ’ | (=
APPLICATION
DTLS -|\/|_ EAP-TLS
PACKETS DTLS PACKETS

EAP-TLS B
BRIDGE <¢ >’ ,

Experimental Platform

The cryptographic module (Gemalto TOP-IM GX4)is based on
the Samsung S3CCITC chip. It includes:

- a 16 bits CPU

- 72 KB of EEPROM

- 384 KB of ROM

- 8 KB of RAM for the CPU

- 2 KB of RAM for the crypto processor

MD)5 SHAI 3xDES AES RSA RSA 10
ms/block | ms/block = ms/block = ms/block | Pub ms | priv ms | ms/B
64B 64B 8B 16B 128B 128B

0.50 0.90 1.8 2.1 23 510 0.1

N

Performances

The booting of a TLS/DTLS session (until the delivering of
finished messages) should cost about 878 ms (1300 ms
measured) consumed by the following operations:
- 556 ms for RSA procedures, one RSA private key
encryption and two public key decryptions (510+ 23 + 24)
-322 ms for hash procedures, requiring the computing of
230 MD5 et 230 SHA1 block
The measured time for a resume session (75 SHA blocks+ 75
MD5 blocks = 105 ms) setting is 360 ms

Pascal Urien 124

Performances

The processing of encrypted record packets, with a 1024 bytes
size, should require about 143 ms (415 ms measured),
according to the following relations :

- 135 ms (64 x 2,1) for the encryption/decryption of 64 blocks of
data.

- 18 ms (20 x 0,9) for the HMAC (SHAL) processing of 20 (16+4)
blocks of data

Pascal Urien 125

Example of Application

eLOCl‘(COAP COAP HTTp | Keyserver
(\(&} DTLS SIM DTLS SIM TLS
Server Client TCP
LK l NFC NFC P

“Innovative DTLS/TLS Security Modules Embedded in SIM Cards
for lIoT Trusted and Secure Services”, to appear, IEEE CCNC 2016

Pascal Urien 126

USE Case 1. COAP Key

Secure Element as a CoAP Client
Secure Element as a TLS client

Urien, P.; "Innovative DTLS/TLS Security Modules Embedded in SIM Cards
for 10T Trusted and Secure Services", IEEE CCNC 2016, Las Vegas, NV, USA

Urien, P.; "Towards Secure Elements For The Internet of Things: The eLock Use
Case", IEEE MobiSecServ 2016, Gainesville, FL, USA

Pascal Urien 127

E\C‘ In the Internet

4

]

O

Issues to Solve

of Thing (loT)
alockis a
COAP Server

So the Key
IS a COAP
Client

What is a Key in the Internet of Things ?
* A Mobile Application ?

Where is stored the Key ?
* In a Secure Element (SIM)

Who is generating the Key ?

* A Key server generates
KeyContainers

What about security and trust

— COAP client and dual TLS/DTLS stack
are running in a Secure Element

Pascal Urien 128

IEEE CCNC 2016 Demonstration

PI'D}(V Agent

Rl.ﬂl:? P‘TCOL#22 EPOCH#D

CBoTzeRT

SEQE4, NextSEQHES
Sending 1039 bytes

BL#13, PTCOL#20, EPOCH#O
BL#0, PTCOL#Z22, EPCCHAL

Sending 77 bytes

EL#1, PTCOL#23, EPOCH#L

Sending 61 bytes

BL#2, PTCOL#21, EPOCH#1

ALERT

DTLS Read End, socket err

Lo LT T
Server read 21 bytes

LA B TIN

W e Con
‘) Bx: 02 03 00 57

DTLS/iso7816 https://KeyServer.com/?KeyContainer

00 00 00 OO
27 91 CD 66
c4 0OA BA F3
07 B4 15 DB
DO 42 83 1A

01 00 40 B1 C4 BC 72 5D 46 ED 58 D5
5F AR FB 4B 22 61 4C 75 2F 08 DO SE
77 BB 82 41 8F 02 7D 08 AB 3E 85 5C
1B 05 4E 2F 4E 18 02 E4 48 03 BF 06
20 DS 75[80 00

0D B0 00 00 00 4D|17 FE FF 00 01 001 [

OPEN-LOCK
GET-KEY

Tx: A0 BO 00 OO

43 01 03 00 43 OpD 00|17 FE FF 00 01

00 00 o0 o
41 1c 49 80
42 BO 03 48

00 01 00 30 0A TD 1Cc 70 EB 51 06 B2
62 8D 6D AE 1F T7C 43 FC 29 74 T4 64
87 DS OE 3A 62 51 4D %1 7C 14 DB 34

40020001FFTETETETETETETETEGRG5 797661607665

Server wrote 7 bytes
60450001FF4BTE
Connection Closed. ..

COAP/DTLS Server

1C OA DO &F AR 77 AD QA| COAP POST & ACK

=)o nju-cm,

Console NFC=-Folling is Ready Soo [

Polling. ..
Sucesss...Duration :6633 ms
Polling. ..
Lock System Open

Key Value
POST Key

COAP |«

p| COAP TLS

DTLS |=
Server

receive-DTLS-Flight

Proxy
Agent

LOCK Device

‘—.
send-DTLS-Flight

» DTLS/

iso7816

Reader

TLS/
iso7816

DTLS/
iso7816

COAP-DTLS-SIM and TLS-SIM javacard Appllcatlons

129

\
h

E »/ DTLS Client |
E : Client o

Pascal Urien

User’s Experience

A @ 7 .l 100% M 15:48
6 Key Active

7 .l 98%H 15:44

OPEN-LOCK Start-Lock

LOAD-KEY

R
Connecting to KeyServer...
— —

50/100 o.s

Stop-Lock

PRIVACY & CONTENT
PROTECTION

Set-KeyServer

QUIT

Pascal Urien 130

Double TLS with RACS Server for Key

Provisionning
SIM COAP
NFC Lock TLS/DTLS Security Module RACS Server
COAP Server R

O DTL§ J ()(2XTLS

F\E(:l
COAFr 5
l{(\DTLS) TLS Sessi
COAP POST is transferred Get %

< keyMalUeck oK to the Mobile KeyContain
> le er

Write KeyContainer in the SIM

(DTLS Close
DTLS Close

Pascal Urien 131

Use Case 2. TLS Server
for Operated Connected Plug

Secure Element as TLS Server Stack

Pascal Urien 132

A Connected Plug

ePlug.java E

TLS-SE API sl

JAVA 15 A TLS Server

TCP

PCSC- | Virtual / o

Lite Hub

Debian OS AT

LS
"o/ 133

)
L
vy ‘\ R
) L\ ‘ Uy,

| 2 2\

\ N
Y
e e ¢
" :
» " IR
} 4 =)
. [
S 3 b
o
2 =)

S D e R W
Ll i — A
)
-
B —

f:.‘.‘.% ¥
[

—

12

October 9th 2016 = ———

