Werner von Siemens: At a glance

1816 – 1892
Werner von Siemens was a responsible entrepreneur and far-sighted inventor whose name soon became a household word around the world. Far ahead of his time, he recognized and fostered the link between science and technology.

“In my youth, I dreamed of founding an enterprise of world standing comparable to that of the Fugger dynasty …”

Werner von Siemens, 1887
Milestones of a 170-year history

1816 – 1892
Company founder, visionary and inventor

1866
The dynamo makes electricity part of everyday life

1847
Pointer telegraph lays the foundation of Siemens as a global company

1959
SIMATIC makes Siemens a leader in automation technology

1925
Siemens electrifies the Irish Free State with a hydroelectric power plant.

1983
First magnetic resonance imaging scanner goes into operation

1975
Breakthrough of high-voltage direct-current (HVDC) transmission

2012
Test operation of the world’s largest rotor for offshore wind turbines

2010
TIA Portal takes automation a stage further

2015
Sinalytics puts digital services for industry on a new footing

1983
First magnetic resonance imaging scanner goes into operation

1959
SIMATIC makes Siemens a leader in automation technology

1847
Pointer telegraph lays the foundation of Siemens as a global company

1866
The dynamo makes electricity part of everyday life

1816 – 1892
Company founder, visionary and inventor
Vision 2020 –
A consistent company concept

E-A-D – a complete system

With our positioning along the electrification value chain, we have know-how that extends from power generation to power transmission, from power distribution and smart grids to the efficient application of electrical energy.

With our outstanding strengths in automation, we’re well equipped for the future and the age of digitalization.
Digitalization at Siemens – Productivity lever for our customers

Improved productivity, shorter time-to-market
Greater flexibility and stability
Higher availability and efficiency

Design and engineering
Automation and operation
Maintenance and services

Linking the virtual and real worlds along the entire value chain of customers

Revenue, FY 2015
€3.1 billion

Profitability
++

Market growth
+9%

Vertical software

Digital services
€0.6 billion

++

+15%

Market growth
Concept for the Industrial Application of the Internet of Things –
The Web of Systems provides security for critical infrastructure

- Siemens believes the Internet of Things has tremendous potential
- In critical infrastructure, customers have much higher requirements regarding reliability, service life and data protection
- For this reason, in a Web of Systems the data is processed locally
- This ensures that the knowledge and the intellectual property of our customers remain protected
- Siemens is already using this technology in many projects today
Our innovative power in figures – Siemens as a whole and Corporate Technology

Expenditures for research and development

€4.5 billion
Expenditures for R&D in fiscal 2015

Inventions and patents – securing our future

7,650 inventions\(^1\)
3,700 patent applications

University cooperations – our knowledge edge

32,100 R&D employees\(^1\)
9 CKI universities\(^2\)
16 principal partner universities

Corporate Technology – our competence center for innovation and business excellence\(^3\)

7,800 employees worldwide
5,300 software developers
1,600 researchers
400 patent experts

1 In fiscal 2015
2 Centers of Knowledge Interchange
3 Employee figures: Status September 30, 2015
Our organization – Corporate Technology at a glance

<table>
<thead>
<tr>
<th>Corporate Technology (CT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTO – Prof. Dr. Siegfried Russwurm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Business Excellence, Quality Management, top*</th>
<th>Corporate Intellectual Property</th>
<th>Development and Digital Platforms</th>
<th>Innovative Ventures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business excellence</td>
<td>Protection, use and defense of intellectual property</td>
<td>Competence center for horizontal and vertical product-and-system integration as well as software, firmware, and hardware engineering</td>
<td>Access to external innovations</td>
</tr>
<tr>
<td>Quality management</td>
<td>Patent and brand protection law</td>
<td></td>
<td>Start-up foundation</td>
</tr>
<tr>
<td>Internal process and production consulting</td>
<td></td>
<td></td>
<td>Commercialization of innovations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research in Digitalization and Automation</th>
<th>Research in Energy and Electronics</th>
<th>Technology and Innovation Management</th>
<th>University Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research activities covering all relevant areas in digitalization and automation for Siemens</td>
<td>Research activities relating to energy and electrification, electronic, new materials and innovative manufacturing methods</td>
<td>Siemens’ technology and innovation agenda</td>
<td>Global access to the academic world</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standardization, positioning regarding research policy</td>
<td>Top positioning in terms of university cooperations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provision of publications relating to R&D</td>
<td></td>
</tr>
</tbody>
</table>
Increasing intelligence and open communication drive security requirements in various industrial environments.
Our industrial society confesses a growing demand for IT-Security

IT Security trends are determined by drivers such as

- Industry infrastructures changes (Digitalization)
- More networked embedded systems
- Increasing device-to-device communication
- Need to manage intellectual property

And

- Increasing international organized crime
- Privacy
- Compliance enforcement
- Cyber war fare
- Cloud/Virtualization
- PDAs, Smart Mobiles
- Social Networks / data mining concepts
- ….
The threat level is rising – Attackers are targeting critical infrastructures

Evolution of attacker motives, vulnerabilities and exploits

The Age of Computerworms
- Code Red
- Slammer
- Blaster
- "Hacking for fun"
- Hobbyists
- Backdoors
- Worms
- Anti-Virus
- Hackers
- BlackHat
- Viruses
- Responsible Disclosure

Cybercrime and Financial Interests
- Zeus
- SpyEye
- Rustock
- "Hacking for money"
- Organized Criminals
- Credit Card Fraud
- Botnets
- Banker Trojans
- Phishing
- SPAM
- Adware
- WebSite Hacking

Politics and Critical Infrastructure
- Aurora
- Nitro
- Stuxnet
- "Hacking for political and economic gains"
- Hacktivists
- State sponsored Actors
- Anonymous
- SCADA
- DigiNotar
- RSA Breach
- APT
- Targeted Attacks
- Sony Hack

Hacking against physical assets
- States
- Criminals
- Terrorists
- Activists
- Cyberwar
- Hacking against critical infrastructure
- Major loss of privacy
- "Gläserner Bürger im Netz"
- Identity theft
- Ransomware

Data sources:
- IBM X-Force Trend and Risk Report
- HP Cyber Risk Report
- Symantec Intelligence Report

of published exploits
of published vulnerabilities

of new malware samples

Industrial systems and office world have different management & operational characteristics

<table>
<thead>
<tr>
<th>Protection target for security</th>
<th>Production resources, incl. logistics</th>
<th>IT- Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Lifetime</td>
<td>Up to 20 years</td>
<td>3-5 years</td>
</tr>
<tr>
<td>Availability requirement</td>
<td>Very high</td>
<td>Medium, delays accepted</td>
</tr>
<tr>
<td>Real time requirement</td>
<td>Can be critical</td>
<td>Delays accepted</td>
</tr>
<tr>
<td>Physical Security</td>
<td>Very much varying</td>
<td>High (for IT Service Centers)</td>
</tr>
<tr>
<td>Application of patches</td>
<td>Slow / restricted by regulation</td>
<td>Regular / scheduled</td>
</tr>
<tr>
<td>Anti-virus</td>
<td>Uncommon, hard to deploy, white listing</td>
<td>Common / widely used</td>
</tr>
<tr>
<td>Security testing / audit</td>
<td>Increasing</td>
<td>Scheduled and mandated</td>
</tr>
</tbody>
</table>

Office IT

- **IT- Infrastructure**
- **3-5 years**
- **Medium, delays accepted**
- **High (for IT Service Centers)**
- **Regular / scheduled**
- **Common / widely used**
- **Scheduled and mandated**
The CIA pyramid is turned upside down in industrial automation and control systems

- **Availability**
- **Integrity**
- **Confidentiality**

Industrial Automation and Control Systems

Office IT Systems

- **Confidentiality**
- **Integrity**
- **Availability**
Industrial systems and office world have different functional security requirements

<table>
<thead>
<tr>
<th>Security Awareness</th>
<th>Industrial Systems</th>
<th>Office IT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increasing</td>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security Standards</th>
<th>Industrial Systems</th>
<th>Office IT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Under development, regulation</td>
<td>Existing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Confidentiality (Data)</th>
<th>Industrial Systems</th>
<th>Office IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low – medium for production floor</td>
<td>High for business-relevant know-how</td>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integrity (Data)</th>
<th>Industrial Systems</th>
<th>Office IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Medium</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Availability / Reliability (System)</th>
<th>Industrial Systems</th>
<th>Office IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 x 365 x …</td>
<td>Medium to High</td>
<td>Medium, delays accepted</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Repudiation</th>
<th>Industrial Systems</th>
<th>Office IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>Medium</td>
<td></td>
</tr>
</tbody>
</table>

“Office“ security concepts and solutions are not directly applicable for industrial control systems.
Security-by-Design is different from Safety-by-Design

IT Security

Prevention of consequences of threats to a system (intentionally) caused by humans and/or environment

Safety

Prevention of threats to humans and environment caused by technical systems
IEC62443 as standard for industrial security enables a graded security approach to achieve appropriate protection

- IEC 62443 is a framework specifying security requirements for industrial automation control systems (IACS)
- Addresses organizational and technical requirements
- Supports purpose fit security solutions by supporting security features with different strength
Security-by-design cares for the entire product and system life cycle

Enable an organization to adequately address security

Operate securely, detect and handle security threats and incidents

Measure and assure adequate security level

Integrate security in solutions and services

Design, implement and select security building blocks
Security within Industry 4.0:
Security by design & security by default

More integrated security within applications
- …rather than just within the network (layers)
- Application based end-to-end security must be possible

Adaptive security architectures
- Agile security profiles have to be adaptable in a dynamic way.
- Fast configuration must include security.

Security for the digital model
- Security for the physical instance, its digital twin and their interactions must take place in a concerted way.

Prevention and reaction are still needed
- Security will remain moving target. There will be no final I4.0 security solution without a need for further measures.
The Future of Industry: Security for Industry 4.0 – (some) constraints and requirements

Authentication and Secure Identities for Devices
Unforgeable identities and trust anchors are needed. Keys respectively security credentials must be bound to the device.

B2B vs. B2C communication
Individual and short-term consideration of customer requests (“batch-size 1”) need enhanced security

IT Security as enabler of business models
Digitalization of business processes often mandate additional measures regarding IT security. Ease-of-use and plug&operate are important pre-requisites for the acceptance of security measures.

Standardization enables secure infrastructures
Security requires standardized specifications of interfaces and protocols to support requirements and to negotiate and operate security profiles (security semantics) between different domains.
Example: Smart Grid
Secure Communication supports reliable operation

- Power Quality Monitoring and Eventing (Transmission/Distribution, Substation)
- Communication Standards used: IEC 61850 (GOOSE)
- Security uses group-based security integrated in GOOSE (IEC 62351-6)

- Substation Automation (Telecontrol and Monitoring)
- Communication Standards used: IEC 60870-5-104, IEC 61850
- Remote Service
- Transport level security through TLS (IEC 62351-3/4/5)
- Application level security through X.509 based authentication + integrity. (IEC 62351-4)

- DER Integration (Metering & Control)
- Communication Standards used: IEC 61850, XMPP (future use)
- Transport level security through TLS (IEC 62351-3/4/5)

- Connecting electric vehicles to the charging infrastructure
- Communication Standards used: ISO/IEC 15118, IEC 61850
- Transport level security: TLS
- Application level security: XML Dig.Sig.
Example IEC 15118: eCar charging security
Securely connecting the vehicle to the smart grid

Standard for the interface between vehicle and charging station supporting
- Connection of vehicles to the power grid
- Billing of consumed energy (charging)
- Roaming of electric vehicles between different charging spot
- Value added services (e.g., software updates)

Trust Relations from the electric vehicle
- Towards backend (energy provider) for signed meter readings and encrypted information (e.g., tariff)
- Towards charging spot as terminating transport peer

- XML Security
- TLS Security
- Application
- Transport
- e.g., contract related data, meter reading, tariffs, etc.
- contract authentication
- authentication, transport protection
IEC 15118 – Approach based on certificates and corresponding private keys (PKI)

Approach

- Transport Layer Security to protect exchange between vehicle and EVSE
- Application layer security using XML security for data exchange with the backend

Credentials

- Public/private key pair incl. certificate

Connectivity

- Online and Semi-online to the backend
- Persistent connection between vehicle and EVSE during charging to exchange charging process relevant information, especially a cyclic exchange of metering data for provided energy
Different factors are driving the demand for IT Security

New Functionality and Architectures
- Connectivity of devices and systems to public networks
- IP to the field
- Use of mobile devices

Security Use Case
- Know-how protection
- Licensing

Quality of Security
- Robust
- Easy to use
- Long term security

60 Billion Intelligent Devices

Unrestricted © Siemens AG 2016
Security has to be suitable for the addressed environment

Since security is not just a technical solution, which can be incorporated transparently, we need to consider how humans can get along with this issue. This needs, especially for automation environments, actions for:

- awareness trainings
- help people to understand security measures and processes
- provide user friendly interfaces and processes

Awareness and Acceptance
Dr. Rainer Falk
Principal Key Expert

Siemens AG
Corporate Technology
CT RDA ITS
Otto-Hahn-Ring 6
D-81739 Munich
Germany

E-mail
rainer.falk@siemens.com

Internet
siemens.com/corporate-technology
E-A-D – a complete system

With our positioning along the electrification value chain, we have know-how that extends from power generation to power transmission, from power distribution and smart grids to the efficient application of electrical energy.

With our outstanding strengths in automation, we’re well equipped for the future and the age of digitalization.
Digitalization at Siemens – Productivity lever for our customers

- Improved productivity, shorter time-to-market
- Greater flexibility and stability
- Higher availability and efficiency

Design and engineering

Automation and operation

Maintenance and services

Linking the virtual and real worlds along the entire value chain of customers

Vertical software
- Revenue, FY 2015: €3.1 billion
- Profitability: ++
- Market growth: +9%

Digital services
- €0.6 billion
- +++
- +15%

Cooperation and mobile IT
Smart data and analytics
Cloud technologies
Connectivity and Web of Systems
Cyber security
Concept for the Industrial Application of the Internet of Things – The Web of Systems provides security for critical infrastructure

- Siemens believes the Internet of Things has tremendous potential.
- In critical infrastructure, customers have much higher requirements regarding reliability, service life and data protection.
- For this reason, in a Web of Systems, the data is processed locally.
- This ensures that the knowledge and the intellectual property of our customers remain protected.
- Siemens is already using this technology in many projects today.
Megatrends – Challenges that are transforming our world

Digitalization
By 2020, the digital universe will reach **44 zettabytes** – a tenfold increase from 2013.¹

Demographic change
The earth’s population will increase from 7.3 billion² people today to **9.7 billion**² in 2050. Average life expectancy will then be 83 years.²

Urbanization
By 2050, 70 percent of the world’s population will live in cities (today it’s 54 percent).³

Globalization
The **volume of world trade** nearly doubled between 2005 and 2014.⁵

Climate change
According to scientists, in the summer of 2016, the Earth’s atmosphere had the **highest CO₂ concentration** in 800,000 years.⁴

Sources:
5. UNCTAD Statistics, Values and shares of merchandise exports and imports from 1948 to 2014, November 10, 2015
Concrete examples of our work – Core elements for the success of Digitalization

Intelligent industrial networking via Internet
We extended the concept of the Internet of Things for industrial applications: A digital networked world full of devices which are connected to the Internet has an influence how we control factories or critical infrastructures. Our Web of Systems makes these interactions reliable, safe, durable and can be used to "digitally toughen up" existing plants.

Further information is available here: Pictures of the Future

Optimizing maintenance intervals
From trains to turbines, a vast range of machines generate and transmit data every second. With the technology platform Sinalytics we extract valuable information from this data to provide benefits for our customers. CT is responsible for this platform which brings together all of the technological components needed for data integration and analysis, connectivity, and cyber security.

Further information is available here: Pictures of the Future