Bing Agllity

MODERN ENGINEERING PRINCIPLES FOR LARGE SCALE TEAMS AND
SERVICES

Outline

1. A bit about Bing

2. Velocity... What does it mean?
3. What is tested?

4. Modern Engineering Principles
5. The inner and outer loop

6. Performance gating

A b It a.bO Ut B I n WW > 300M users, 9B searches/month Queries/UU (Dec 2014)
g US >100M users, 4B searches/month
Bing 38.3
Search market

share 1. BING IS GROWING 2. MORE
70.00% -~ WORK TO DO Google 66.9

0000000000 00000000 000000000000000000000
60.00%
50.00%
40.00%
30.00%
20.00%oooooooooooooo
10.00% ocooooooi"‘°..
o,
0.00% Bing on the road Bing Desktop
Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14
Bing is designed to work beautifully Get the beauty of the Bing homepage on
Bing B Powered by Bing O Google across all your devices. your PC desktop every day.

3. DIFFERENTIATE

Results for "toby lightman® 2

Bing makes predictions

Bing uses search, social, and other relevant data to make
intelligent predictions about upcoming events, like sports
games, reality TV shows, and more.

Bing Homepage Bing in the Classroom

Explore breathtaking images and Support digital literacy with ad-free
download all your favorites. search, free Surfaces, and lesson plans.

Toby Lightman

Velocity

Does not mean... Does mean...

Shipping untested code... (any bozo can

do that) Shipping thoroughly tested code...

Shipping with high quality

@ Shipping fast!

What Is tested?

Security @ Performance

Privacy

Browser Device

Globalization

@ Localization

Scenario

Coverage ' Instrumentation
.’ . '

Modern Engineering Principles

-

Current engineering landscape

\

o

Hundreds of engineers

\

¢ 2000 engineers, across all continents

rShip 4x/day

e Full build shipped to production, no live site issues!

Agile

¢ {design, dev, test} = ship (no PO bugs) = repeat

e

One source tree

L

e Componentization, contracts, modularization

-

\

19.7% search market share (>30% share if Yahoo! is included)

Modern Engineering Principles

[Test-Driven Evolution: 11 Principles

Automate every test, but don’t test everything

Run all tests for every single check-in

Tests are binary: either they all pass, or they all fail

No test selection. Run them all. Scale thru HW + SW + Quota
Retire/Change old definitions and concepts

Embrace the Open-Source!

Testing in Production (deploy to production, test in production)
Deployment gated by tests: if any test fails, rollback

Defensive coding techniques (code + test case for every check-in, small check-ins, code behind
flights, etc.)

e ke e Ll g 8 D L

10. Be truly data driven
11. Live Site remains the King!

1. Automate every test,
but don’t test everything

[Make every test reliable: J

e Use mock data to isolate the code
e Write Once, Run Against Multiple Contexts
e Have “contractual” tests running to validate FE €<—2> BE schema

[Trust modern tools:]

e Ul automation is no longer fragile (Selenium)
e Cloud helps with elasticity for your tests (scaling out)

[Have a browser matrix, stick with it and deal with the rest! J

2. Run all tests for every single check-in

[Integration of tests with Code Flow]

» Takes one hour for the first review to come (idle time)
e Changes =@ build = deploy => tests

[Z0,000 tests <= 20min, code coverage ~65% }

e Fast: mocked data

e Fast: Machines + Parallelism
e Fast: time quota system per feature team

3. Tests are binary: either they all
pass, or they all fail

No concept of All tests must
priorities until the pass, otherwise
test fails check-in’s blocked

4. No test selection. Run them all.
Scale thru HW + SW + Quota

[The problems with test selection:]

e A complicated imperfect system b/w product and tests
e Makes the process non-deterministic
e Some tests will rarely run!

{”Throw machines at the problem!” }

e This is what most big software corporations do
e Combination of HW + SW + Quota system

5. Retire/Change old definitions and
concepts — Simplify!

Dev Documents
and Test Plans =

Test case priorities
=>» Until they fail,

Test suites =» one

Test pass =» done
when the check-in

One Page they are PO goes thru
: But what about Ship decision =
Test environments : Code coverage = from managers to
: destructive? = : : .
=>» production : just one data point engineers, based
production

on bugs

Obsessed about
bugs =» Obsessed
about user impact

Line b/w dev and
test =» blurred

6. Embrace the Open-Source!

-

Don’t try to compete with them — join them

A

-

All our tools are now all based on open-source

A

e Selenium, WebPageTest, PhantomlsS, JS libraries, and many others

[The work involved:

e Streamline the approval process

e Plumbing & Stitching the tools to work on MS tech

/. Testing In

Production (TiP)

The problems with
test environments:

Use an “invisible”
PROD environment

Look at issue
patterns in PROD

What about
destructive tests?

Maintenance
Not representative
Infinite catch-up game

Behind a non-rotate flight
Behind a VIP that can’t be accessed from outside corpnet

Instrument every single aspect of the code
Big data/machine learning/telemetry techniques

Do it in PROD! Failovers/Load/Switch off the power to a DC
Better found by you than by someone else!

8. Deployment gated by tests: if any
test falls, rollback

[xPing: our version of Gomez/Keynote: J

e Simple HTTP Gets

e xPing+: complex web-based scenarios using Selenium

e Runs continuously, alerts based on availability threshold
e E2E (no mocking)

[Canary deployment:]

e Deploy to one DC
e “Observe” the xPing tests

e All passed after N minutes? Push to the other DCs
e No? Rollback!

9. Defensive coding technigues

Code + functional test case for every check-in
Small, frequent check-ins
Defensive code — no assumptions!

Code behind a flight — switchable on/off:

10. Be truly data driven

Ve

Instrument every aspect of your code

L

Build a pipeline to gather and analyze the data

Flight 2> Fail 90% = Learn = Ship 10%

Ve

Make informed decisions based on data

\

e Example:

Guardrail Metrics Treatment

Flowers at 1-800-FLOWERS - Same Day Delivery Available. ™ :
¥ 1800flowers.com = Quick Back 20
(183920 reviews) - 37,000+ followers on Twitter =Algo Pane Load Time({Overall PLT)
Same Day Delivery Available. 100% Satisfaction at 1-800-FLOWERS. — Revenue /UL
Anniversary Flowers. Best Selling Flowers. Truncated Revenue / UU

Rose Spectacular. Bithday Flowers & Gifis. Distingt Queries / UU

Fresh Cuts. Cift Baskets. —Average Log Record Size (in KB)

Contro

0.8504
14.67
1111

0.0014 [0.60%]

4.055 [0.34%)]
0.0130 [1.21%]
0.0067 [0.79%]

0.2545 [0.23%)]

< 0.001

1.001

< 0.001

11. Live Site

AWM

Challenges & Learnings

» Management must embrace it

» Put dedicated engineers on the problems

» Be date-driven (things won’t be perfect, but just do it!)
» This is a drastic change

» Not everyone was happy... but don’t try to please everyone!
» Have challenging and insane goals

The Inner Dev Loop (on demand)

Code Review Pipeline

Build pipeline
build Unit test

Check in Wizard

Verify test results

Source Code Repository

Mainline tests

Bing UX Functional Automation

Mocked functional automation
o Create and deploy mocked data

> Request it as a Backend response

Test case

Test case

Bing UX Functional Automation

Vector Data

HTTP request/response
HTTP request/response
Browser-driven

Browser-driven

D:~ruget "www.hing.com/search?gs

——18:47:49— http://wuw_.bing.ca
=»* ‘search?q=-test’

Resolving www.hing.com... done.

Bing UX Functional Automation

Vector Data

HTTP request/response
HTTP request/response

Browser-driven

Browser-driven

D:sruget “www.bing.comAsearch?g=

——18:47:49— http:/A/wuu_bing.ca
=» ‘search?g=test’
Resoluing www.bhing.com... done.

Test case

Bing UX Functional Automation

Vector Data

HTTP request/response
HTTP request/response

Browser-driven

Browser-driven

D:sruget “www.bing.comAsearch?g=

——18:47:49— http:/A/wuu_bing.ca
=» ‘search?g=test’
Resoluing www.bhing.com... done.

Test case

Bing UX Functional Automation

Vector Data

HTTP request/response
HTTP request/response

Browser-driven

Browser-driven

D:sruget “www.bing.comAsearch?g=

——18:47:49— http:/A/wuu_bing.ca
=» ‘search?g=test’
Resoluing www.bhing.com... done.

Test case

Code Reviews

Can block check-in...

Checked-In code

Has passed tests

Gﬁ%‘ ship within hours
=

o —

@ by the feature teams

Continuous Delivery Loop (every day)

Source Code Repository

Build pipeline
— e
build Unit test

Staging TIP
Canary tests Mainline tests

Primary

Primary

Primary

Canary tests

Canary tests

Canary tests

Canary PROD Env

Canary tests

Performance Testing Strategy: Budgeting

.b_focusTextExtrasmall,
.b_focuslabel,
.b_secondaryFocus,
.b_1Text

Runs as a CheCk-in teSt ol font: 1l8px/normal "Segoe UL', Arial, Helvetica, Sans-Serif;

line-height: 1.2em;
.- . . }
Utilizes developer maintained budgets
.b_focusTextExtrasmall

for resources {

font: 18px/normal 'Segoe UIL', Arial, Helvetica, Sans-Serif;
line-height: 1.3em;

by

. h_xlTextl
1

b pa

Below, identified an increase in page
size due to a CSS change

B

ooun

font: 24px/normal 'Segoe UL', Arial, Helvetica, Sans-Serif;
line-height: 1.2em;

by

}

wooa

.b_focusTextSmall,

| Sl - - O -~ I R v

= &

Session Details bl Text
User:

{
Session created: 5/12/2014 10:27:07 AM font: 3Zpx/normal 'Segoe UI Light', Arial, Helwetica, Sans-Serif;
Sesslon completed: 5/12/2014 11:21:00 AM line-height: 1.2em;

ha

1]

[I e R il o B el e el el il et
[

L,

Failed Tests

Name #Pass #Fail #5kipped #Total JobState Loy Duration
PPCWorking.xm| 0O 1] 1 Completed Log 00:43

All Tests

Namie #Pass #Fail #Skipped #Total JobState Log Duration
WPBlue, Performance.L4.xml 6 4] [i] Completed Log 01:25

Performance Testing Strategy: Time (Load Test)

Forks traffic from production (no PIl, ~1M queries)
Results from initial requests cached & replayed

Runs for every check-in (2ms resolution)

4ms
Optimization
Options: justify the increase, or offset it by optimizing other areas el

Here

Wkl o Ao A At

Questions?

