More than the Machine – Using Memristors for Computing

Dietmar Fey
Department Computer Science – Chair for Computer Architecture
Friedrich-Alexander-University Erlangen-Nürnberg
What is the Machine?

- Who is aware of HP’s Machine?
What is the Machine?

- Utilisation of different technologies

Together...

Electrons for compute
Electrons like to interact; easily moved; interaction needed for compute

+ Ions for storage
Ions like to interact; stay put; good for storage

+ Photons to communicate
Photons don’t like to interact or stay put; good for long-distances

Source: P. Ranganathan, “Saving the world together, one server at a time…” ACACES 2011
What is the Machine?

- Special purpose cores arbitrarily connected with pool of non-volatile memories – the memristors
 - Access times between 0.3 and 3 ns (< below 250 ns)
 - Mostly flat memory model
 - Paging and TLBs shall become obsolete
 - Vision: Cache becomes non-volatile
What is the Machine?

- HP will provide first products of a complete new computer architecture within the next two to three years
- Up 160 racks based on memristors connected to a cluster
 - Data capacity up to 160 Petabyte
 - Size of a refrigerator
What is the Machine?

- Processor cores and memory connected via high speed fiber optics
 - Bandwidth of 6 Terabit / second

- Machine rack no server
 - Architecture flexible configurable from mobile device up to large computer
What is the Machine?

- Schedule for the revolution
 - New memory controllers
 - New OS for the Machine: Linux++ → Carbon
Outline

- What is the Machine?
- Memristor technology
- Digital Boolean logic with memristors
- Ternary Computing using memristors
- Conclusion
Memristor technology

- **Memristor - The missing 4th element**
 - Predicated by Leon Chua in 1971
 - Predicated by Leon Chua in 1971
 - Experimentally found in 2008 at HP Lab

Memristor—The Missing Circuit Element

LETTERS

The missing memristor found

Dmitri B. Strukov¹, Gregory S. Snider¹, Duncan R. Stewart¹ & R. Stanley Williams¹
Memristor technology

- Two principal kinds of memristors
 - Change resistivity of the device, e.g. due to ion transfer

\[R_{MEM}(x) = R_{ON} \cdot x + R_{OFF} \cdot (1 - x), \]
\[\text{where } x = \frac{w}{D} \in (0, 1) \]

Image from http://bit-player.org/2012/remember-the-memristor

Total memristance = sum of resistances of the doped und undoped regions
Memristor technology

- ResitiveRAM (ReRAM): Growing of a conducting filament due to depositions of cations

\[I_{\text{fil,SET}} = j_{0,\text{el}} A_{\text{fil}} \left(\exp \left(-\frac{e^2}{k_B T} n_{\text{fil}} \right) - 1 \right) \]

\[I_{\text{TU}} = \frac{C^3 \sqrt{2 m_{\text{eff}} \Delta W_0}}{2 \lambda} \left(\frac{e^2}{\hbar} \right) \exp \left(-\frac{4 \pi X}{\hbar} \sqrt{2 m_{\text{eff}} \Delta W_0} \right) A_{\text{fil}} V_{\text{TU}}. \]

More complicated model than to the HP model before

Images and equations taken from

PCCP

Switching kinetics of electrochemical metallization memory cells

Stephan Menzel,*, Stefan Tappertzhofen,† Rainer Waser* and Ilia Vakoss*
Memristor technology

- Modelling memristor behaviour
 - Used in a SPICE simulation
 \[
 \frac{dx}{dt} = k \cdot i(t) \cdot f(x), \quad k = \frac{\mu_v R_{ON}}{D^2}
 \]
 - Using a model for a non-linear dopant drift (window function)

Zdeněk BIOLEK, Dalibor BIOLEK Viera BIOLKOVÁ
SPICE Model of Memristor with Nonlinear Dopant Drift
RADIOENGINEERING, VOL. 18, NO. 2, JUNE 2009

Used window function

\[
f(x) = 1 - (2x - 1)^2^p
\]
Memristor technology

- Modelling and simulating memristors
 - Use an equivalent SPICE circuit model
 - Simplifies execution of mixed-signal simulations

Zdeněk BIOLEK, Dalibor BIOLEK Viera BIOLKOVÁ
SPICE Model of Memristor with Nonlinear Dopant Drift
RADIOENGINEERING, VOL. 18, NO. 2, JUNE 2009

* Memristor SPICE Model
 * For Transient Analysis only
 * created by Zdenek and Dalibor Biolek

* Ron, Roff - Resistance in ON / OFF States
* Rinit - Resistance at T=0
* D - Width of the thin film
* \(\mu v \) - Migration coefficient
* \(p \) - Parameter of the WINDOW-function
 * for modeling nonlinear boundary conditions
* \(x \) - \(W/D \) Ratio, \(W \) is the actual width
 * of the doped area (from 0 to D)
* \(C_x \)

* RESISTIVE PORT OF THE MEMRISTOR *

 \(E_{mem} \) plus aux value = \{-I(Emem)*V(x)*(Roff-Ron)\}
 Roff aux minus \{Roff\}

* Flux computation *
 **
 Eflux flux 0 value = \{SDT(V(plus,minus))\}

* Charge computation *
 **
 Echarge charge 0 value = \{SDT(I(Emem))\}

* WINDOW FUNCTIONS *
 FOR NONLINEAR DRIFT MODELING *
 **

*window function, according to Joglekar
 \(\text{fun}(x,p) = \{1-(2^*x-1)\}^2*p\} \)
*proposed window function
 \(\text{fun}(x,i,p) = \{1-(x-stp(-i))\}^2*p\) ENDs memristor

Slide 13
Memristor technology

- Modelling multi-bit feature
 - Demonstration in a SPICE simulation
Outline

- What is the Machine?
- Memristor technology
- Digital Boolean logic with memristors
- Ternary Computing using memristors
- Conclusion
Digital Boolean logic with memristors

- Different branches of computing with memristors

- Memristive Computing
 - Analog Computing
 - Neural networks, Neuromorphic processing, STDP
 - Digital Computing
 - Hybrid approaches: CMOS+memristors
 - CMOS-circuit like equivalent memristor networks
 - Ratioed Logic
 - IMPLY Logic

Digital Boolean logic with memristors

- **Ratioed Logic**

 - Creating simple AND- and OR- gates by (mem)resistive networks
 - Making following abstraction
 - Current flowing into the device: memristance ↓
 - Current flowing out of the device: memristance ↑

 *S. KVATINSKY, N. WALD, G. SATAT, A. KOLODNY, U.C. WEISER, G.E. FRIEDMAN
 MRL – Memristor Ratioed Logic
Digital Boolean logic with memristors

- Example for OR and AND gate for input $V_{in1} = 1$ and $V_{in2} = 0$

OR gate

AND gate
Digital Boolean logic with memristors

- IMPLY Logic
 - Based on conditional toggling (kind of 3-phase logic)
 - Initializing certain states in memristors by input data
 - Apply constant voltages (V_{cond} and V_{set}) that possibly change states
 - Reading out the state (applying voltage that does not change states)
Digital Boolean logic with memristors

- State changing after time

![Diagram depicting the relationship between voltage and current over time, showing the behavior of memristors in the context of digital logic.](image)

- **V**_{SET} makes q′ ← 1 if p is opened

- **V**_{COND} let p′ ← p

- Behaviour corresponds exactly to IMPLY logic
 - \(p \rightarrow q = q' \)
- Can be expanded to NAND by subsequent IMP operations
Outline

- What is the Machine?
- Memristor technology
- Boolean logic with memristors
- Ternary Computing using memristors
- Conclusion
Ternary computing using memristors

- **Ternary computers**
 - Since the days of Konrad Zuse and John v. Neumann
 - Binary computers
 - Ternary system
 - Differentiates between 3 and not 2 states
 - 17th century: Caramuel y Lobkowitz
 - Investigated number system with digits 0, 1, and 2

http://ternary.3neko.ru/history_of_ternary.html
Ternary computing using memristors

- 18th century: Abraham Gotthelf Kästner
 - each number weighted sum of multiples of 3
 - Weights were -1, 0, and +1

- Donald Knuth
 - Denoted that as balanced ternary system

 - Fast carry-free addition with signed-digit (SD) numbers
 - Difficult to implement in digital electronics

- 1988: Parhami
 - Binary SD number system

- 1958: Brousentsov
 - SETUN ternary computer
Ternary computing using memristors

- May be a renaissance of ternary computers?
 - CMOS compatible,
 - fast,
 - Energy-poor,
 - multi-bit storing capable non-volatile memory cells like memristors

- Hybrid CMOS-memristor approach

Using the multi-bit feature of memristors for register files in signed-digit arithmetic units

Dietmar Fey
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department Computer Science 3, Chair for Computer Architecture, Martensstr. 3, 91054 Erlangen, Germany
Ternary computing using memristors

- Signed-digit number representation to base 2
 \[w(a) = \sum_{i=0}^{n} a_i \cdot 2^i \]
 \[a = (a_{n-1}, ..., a_0), \quad a_i \in \{-1, 0, 1\} \]

 Example: \(10\overline{1} = 1 \times 2^2 + 0 \times 2^1 - 1 \times 2^0 = 4 - 1 = 3\) \(\overline{1} = -1\)

 \(1\overline{1}1 = 5 - 2 = 3\)

 \(011 = 2 + 1 = 3\)

- Used digital coding for signed digits (SD)

<table>
<thead>
<tr>
<th>a⁺</th>
<th>a⁻</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Not used</td>
</tr>
</tbody>
</table>
Ternary computing using memristors

Carry-free addition in \(O(1) \)

<table>
<thead>
<tr>
<th>Binary addition</th>
<th>Signed digit addition</th>
</tr>
</thead>
</table>
| \[
 \begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 + & 0 & 1 & 0 & 1 \\
 C & 0 & 0 & 0 & 1 - \\
 S & - & 1 & 1 & 1 & 0 \\
 C & 0 & 0 & 1 & 0 - \\
 S & - & 1 & 1 & 0 & 0 \\
 C & 0 & 1 & 0 & 0 - \\
 S & 0 & 1 & 0 & 0 & 0 \\
 S & 1 & 0 & 0 & 0 & 0
 \end{array}
\] | \[
 \begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 + & 0 & 1 & 0 & 1 \\
 C & 1 & 1 & 1 & 1 & 0 \\
 Z \bar{0} \bar{1} \bar{1} \bar{1} 0 \\
 S \bar{1} 0 0 0 0 0 = (16)_{10}
 \end{array}
\] |

- \(O(n) \)
 - Best case: \(\log(n) \)

- \(O(1) \)

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(y_i)</th>
<th>(z_i)</th>
<th>(c_{i+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(c_i)</th>
<th>(z_i)</th>
<th>(s_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
Ternary computing using memristors

- Addition / subtraction of (i) a SD number a and a binary number B and (ii) two SD numbers c and z

(i)

\[
\begin{align*}
 c_i^+ &= a_i^+ \lor \overline{B_i \land a_i^-} \\
 z_i^- &= (a_i^+ \lor a_i^-) \oplus B_i \\
 \land: \text{ and} \quad \lor: \text{ or} \\
 \oplus: \text{ exor}
\end{align*}
\]

(ii)

\[
\begin{align*}
 s_i^+ &= z_i^- \land c_{i-1}^+ \\
 s_i^- &= c_{i-1}^+ \land z_i^- \\
 \land
\end{align*}
\]

- $a - B$: Subtraction can be simply reduced to addition

\[
a - B = (-1) \cdot ((-1) \cdot a + B)
\]

- Negative complement simply by exchange positive and negative part

\[
\begin{array}{c}
 a_i^+ \\
 \downarrow \quad \downarrow
\end{array}
\begin{array}{c}
 a_i^- \\
 \uparrow \quad \uparrow
\end{array}
\begin{array}{c}
 a_i^- \\
 \downarrow \quad \downarrow
\end{array}
\begin{array}{c}
 a_i^+ \\
 \uparrow \quad \uparrow
\end{array}
\]
Ternary computing using memristors

- Schematic of a digit processor cell
2 Signed-digit (SD) arithmetic

- Corresponding gate logic for an SD adder / subtractor cell
 - Completely implemented in SPICE
Ternary computing using memristors

- Schematic of a digit processor cell

 - Several cells are connected side-by-side to a row
Ternary computing using memristors

- Modelling multi-bit feature
 - Interfacing to produce binary input for digital processing circuit
Ternary computing using memristors

- Memristor-based SD arithmetic unit

![Diagram of memristor-based SD arithmetic unit]
Ternary computing using memristors

- Simulation result

![Simulation result diagram showing the simulation of ternary computing using memristors. The diagram includes voltage levels and states for variables a, b, and c, demonstrating addition and subtraction operations.]
Conclusion

- Possible computer architecture revolution happens?
- Core technology are NVM like memristors
- Proposal for first memristive Boolean logic gates
- Renaissance or break-through for ternary computers

Outlook
- First simple gates have to be realised
- Devices have to be improved
- From gates to complex systems