On Statistics of Large-Scale RDF Datasets
On Statistics of Large-Scale RDF Datasets

Iztok Savnik
University of Primorska &
Institute Jozef Stefan, Slovenia
iztok.savnik@upr.si

Kiyoshi Nitta
Yahoo JAPAN Research
Tokyo, Japan
knitta@yahoo-corp.jp
INTRODUCTION

- The need for triple-store systems capable to store and manage from Tera towards Peta triples is obvious.
- The challenge can be primarily divided into subchallenges of
 - data partitioning and
 - distributed query executions.
INTRODUCTION

• Where is statistics needed?
 • data distribution algorithms
 • query optimization and processing
• compute number of instances for all possible schema triples
 • demonstrate what the schema instances are
• we need to carefully define the interpretation that defines "instances"
basic terminology

I --- set of URI-s
B --- the set of blanks
L --- the set of literals.

\[S = I \cup B \]
\[P = I \]
\[O = I \cup B \cup L \]
identifiers

\[\mathcal{I} = I \cup B \]

individual identifiers \(\mathcal{I}_i \) \(\text{rdf:type} \) class identifiers \(\mathcal{I}_c \) \(\text{rdfs:subClassOf} \)

property identifiers \(\mathcal{I}_p \) \(\text{rdfs:subPropertyOf} \)
triples and triple-patterns

- individual (ground) triples:
 include only individual identifiers
- abstract triples:
 include at least one class identifier
- top class \top

\[\forall i : i \in S \cup P \cup O \Rightarrow i \leq \top \]
computation of statistics

- Statistics is computed for each triple t of a given triple-store.
- Triple t can be a schema triple that include the top class T.
- Statistics of t is the size of the set of natural interpretation of t.

small example

(philosopher, rdfs:subClassOf, person)
(scientist, rdfs:subClassOf, person)

(Plato, rdf:type, philosopher)
(Leibniz, rdf:type, philosopher)
(Leibniz, rdf:type, scientist)
(Goedel, rdf:type, scientist)
(Athens, rdf:type, location)
(Leipzig, rdf:type, location)
(Brno, rdf:type, location)

(Plato, wasBornIn, Athens)
(Plato, influences, Leibniz)
(Leibniz, wasBornIn, Leipzig)
(Leibniz, influences, Goedel)
(Goedel, wasBornIn, Brno)
natural interpretation

\[(\text{scientist, } \top, \top) \] *

7 triples:

(scientist, rdfs:subClassOf, person)
(Leibniz, rdf:type, philosopher)
(Leibniz, rdf:type, scientist)
(Goedel, rdf:type, scientist)
(Leibniz, wasBornIn, Leipzig)
(Leibniz, influences, Goedel)
(Goedel, wasBornIn, Brno)
function get_types_of

get_types_of(i: identifier) -> set_of_identifiers
begin
 if (i is individual identifier) then
 return { c | (i,rdf:type,c) IN g };
 if (i is class identifier)
 return { i };
end;
small example

(Leibniz, wasBornIn, Leipzig)

get_types_of(Leipniz) ->
 {philosopher, scientist}
get_types_of(wasBornIn) ->
 {}
get_types_of(Leipzig) ->
 {location}
function transitive_closure

transitive_closure(a: set_of_identifiers)
 -> set_of_identifiers
begin
 repeat
 b = a;
 for each i IN b do
 extend a with c: (i,rdfs:subClassOf,c) IN g;
 extend a with c: (i,rdfs:subPropertyOf,c) IN g;
 until a == b;
end;
small example

(Leibniz, wasBornIn, Leipzig)

gs = {philosopher, scientist}
transitive_closure(gs) ->
 {philosopher, scientist, person, T}
ge_{types of}({}) ->
 {T}
ge_{types of}({location}) ->
 {location, T}
computation of schema triples

compute_statistics((s,p,o): triple)
begin
 gs = get_types_of(s);
 gs = transitive_closure(gs);

 gp = get_types_of(p);
 gp = transitive_closure(gp);

 go = get_types_of(o);
 go = transitive_closure(go);

 for each cs IN gs do
 for each cp IN gp do
 for each co IN go do
 increment counter of (cs,cp,co) by 1;
 end;
small example

(Leibniz, wasBornIn, Leipzig)

t = (Leibniz, wasBornIn, Leipzig)
compute_statistics(t) increases following schema triples:

(T, T, T) (T, T, location)
(philosopher, T, T) (philosopher, T, location)
(scientist, T, T) (scientist, T, location)
(person, T, T) (person, T, location)
computation of statistics

- Statistics is computed for each triple t of a given triple-store.
- Triple t can be a schema triple that include the top class T.
- Statistics of t is the size of the set of natural interpretation of t.
CONCLUSION AND FUTURE WORK

- preliminary study for developing an efficient partitioning method of entity class-based model
 - algorithm for calculating triple statistics
 - trying to calculate for practical size of data (i.e. size of YAGO2 is 217M triples)
- future work
 - develop algorithms for mapping triple classes and triples to partitions
 - investigate efficiencies of triple partitioning processes
 - benchmark using big3store
On Statistics of Large-Scale RDF Datasets

Iztok Savnik
University of Primorska &
Institute Jozef Stefan, Slovenia
iztok.savnik@upr.si

Kiyoshi Nitta
Yahoo JAPAN Research
Tokyo, Japan
knitta@yahoo-corp.jp
Thank you!