

Zurich Research Laboratory

Reliability of Data Storage Systems

Ilias Iliadis April 20, 2015

Keynote NexComm 2015

www.zurich.ibm.com

Long-term Storage of Increasing Amount of Information

An increasing amount of information is required to be stored

- Web services
 - Email, photo sharing, web site archives
- Fixed-content repositories
 - Scientific data
 - Libraries
 - Movies
 - Music
- Regulatory compliance and legal issues
 - Sarbanes–Oxley Act of 2002 for financial services
 - Health Insurance Portability and Accountability Act of 1996 (HIPAA) in the healthcare industry

Information needs to be stored for long periods and be retrieved reliably

Storage

- Disk drives widely used as a storage medium in many systems
 - personal computers (desktops, laptops)
 - distributed file systems
 - database systems
 - high end storage arrays
 - archival systems
 - mobile devices
- Disks fail and need to be replaced
 - Mechanical errors
 - > Wear and tear: it eventually leads to failure of moving parts
 - > Drive motor can spin irregularly or fail completely
 - Electrical errors
 - > A power spike or surge can damage in-drive circuits and hence lead to drive failure
 - Transport errors
 - The transport connecting the drive and host can also be problematic causing interconnection problems

-	-		_	-	-
			-	_	
and the second second	_	- and	Sec. 2.		
-		_			

Data Losses in Storage Systems

- Storage systems suffer from data losses due to
 - component failures
 - disk failures
 - > node failures
 - media failures
 - unrecoverable and latent media errors
- Reliability enhanced by a large variety of redundancy and recovery schemes
 - RAID systems (Redundant Array of Independent Disks)

RAID-5: Tolerates one disk failure

-	-		_	-	-
			-		
and the second second	_	- and	Sec. 2.		
-		_			

Data Losses in Storage Systems

- Storage systems suffer from data losses due to
 - component failures
 - disk failures
 - > node failures
 - media failures
 - > unrecoverable and latent media errors
- Reliability enhanced by a large variety of redundancy and recovery schemes
 - RAID systems (Redundant Array of Independent Disks)

spare

- RAID-5: Tolerates one disk failure
- RAID-6: Tolerates two disk failures

-	-		_	-	-
			-		
and the second second	_	- and	Sec. 2.		
-		_			

Time to Failure and MTTDL

Markov Models for Unrecoverable Errors

- Parameters:
 - $-C_d$: Disk capacity (in sectors)
 - P_s: P(unrecoverable sector error)
 - **h** : **P**(unrecoverable failure during rebuild in critical mode)
 - -q: P(unrecoverable failure during RAID 6 rebuild in degraded mode)
- Reliability Metric: MTTDL (Mean Time To Data Loss for the array)

 $h = 1 - [(1 - P_s)^{C_d}]^{(N-1)}$

MTTDL for RAID 5 and RAID 6

Assumptions:

- *h*: *P*(unrecoverable failure during rebuild in the critical mode)
- *q*: *P* (unrecoverable failure during RAID 6 rebuild in the degraded mode)

Intra-Disk Redundancy (IDR) Scheme

Dholakia *et al.*, "A New Intra-disk Redundancy Scheme for High-Reliability RAID Storage Systems in the Presence of Unrecoverable Errors," ACM Trans. Storage 2008

-			-		-
				_	
_	_	-	-	-	-
	-		-		-

Interleaved Parity Check (IPC) Coding Scheme

- Advantages
 - Easy to implement, using existing XOR engine
 - Flexible design parameters: segment size, efficiency
- Disadvantage
 - Not all erasure patterns can be corrected

© 2015 IBM Corporation

MTTDL for Independent Unrecoverable Sector Errors

MTTDL for Correlated Unrecoverable Sector Errors

	-	-	-	_
	-			
-		-		
	_		-	_

Disk Scrubbing

- Periodically accesses disk drives to detect unrecoverable errors
 - T_s : Scrubbing period = time required for a complete check of all sectors of a disk
- Identifies unrecoverable errors at an early stage
- Corrects the unrecoverable errors using the RAID capability
- Increases the workload because of additional read operations
- Sector write operations result in unrecoverable errors
 - $P_w = P(\text{sector-write operation results in an error})$
 - Transition noise (media noise), "high-fly" write, off-track write
 - Contribution of thermal asperities and particle contamination ignored
- Disk-unrecoverable sector errors
 - are created by write operations and remain latent until read or successfully over-written
- Workload
 - *h*: load of a given data sector = rate at which sector is read/written
 - ➢ e.g. h=0.1 / day → 10% of the disk is read/written per day
 - r_w: ratio of write operations to read+write operations
 - > typically 2/3

	-		
	_		

Modeling Approach

Analytical Results: Probability of Unrecoverable Sector Error

Reliability Results for RAID-5 and RAID-6 Systems

SATA disk drives: C_d = 300GB, MTTF_d = 500,000 h, MTTR=17.8 h, N=8 (RAID 5), N=16 (RAID 6)

MTTDL for an installed base of systems storing 10PB of user data

- The IDR scheme improves MTTDL by more than two orders of magnitude, which practically eliminates the negative impact of unrecoverable sector errors
- The scrubbing mechanism may not be able to reduce the number of unrecoverable sector errors sufficiently and reach the desired level of reliability

Enhanced MTTDL Equations for RAID Systems

Latent or unrecoverable errors

 $P_s = P(\text{sector error})$

- Disk scrubbing
 - Periodically accesses disk drives to detect unrecoverable errors

- Identifies unrecoverable errors at an early stage
- Corrects the unrecoverable errors using the RAID capability
 - > P_s (equivalent) = P(sector error | scrubbing is used)

-	

(+)

Zurich Research Laboratory

Distributed Storage Systems

Markov models

- Times to disk failures and rebuild durations exponentially distributed (-)
- MTTDL has been proven to be a useful metric for
 - > estimating the effect of the various parameters on system reliability
 - comparing schemes and assessing tradeoffs

- Non-Markov-based analysis
- V. Venkatesan et al. "Reliability of Clustered vs. Declustered Replica Placement in Data Storage Systems", MASCOTS 2011
- V. Venkatesan et al. "A General Reliability Model for Data Storage Systems", QEST 2012 General non-exponential failure and rebuild time distributions
 - MTTDL is insensitive to the failure time distributions; it depends only on the mean value

		_	
	- 1	-	_

Time To Data Loss vs. Amount of Data Lost

- MTTDL measures time to data loss
 - no indication about amount of data loss
 - Consider the following example
 - Replicated data for D₁, D₂, ..., D_k is placed:

on the same node
 Clustered Placement

- **Declustered Placement**
- Distinguish between data loss events involving
 - high amounts of data lost
 - low amounts of data lost
 - > Need for a measure that quantifies the amount of data lost

- Amazon
 - The Reduced Redundancy Storage option within Amazon S3 is designed to provide 99.999999999% durability of objects over a given year

average annual expected loss of a fraction of 10⁻¹¹ of the data stored in the system

- Data loss events documented in practice by Yahoo!, LinkedIn, and Facebook
- Assess the implications of system design choices on the
 - frequency of data loss events
 - > MTTDL
 - amount of data lost
 - Expected annual fraction of data loss (EAFDL)
 - Fraction of stored data that is expected to be lost by the system annually
 - EAFDL metric is meant to complement, not to replace MTTDL
 - These two metrics provide a useful profile of the magnitude and frequency of data losses
 - for storage systems with similar EAFDL
 - most preferable the one with the maximum MTTDL

Previous Work on Storage Reliability

Reliability Measure	Theory / Analysis	Simulation
	 Markov models Original RAID-5 and RAID-6 MTTDL equations Enhanced MTTDL Equations Latent or unrecoverable errors Scrubbing operations 	Non-Markov-based MTTDL simulations
MTTDL	 Non-Markov-based models General non-exponential failure and rebuild time distributions Placement schemes Network bandwidth, Latent errors, Erasure codes 	
Other Metrics	I. Iliadis and V. Venkatesan, "Expected Annual Fraction of Data Loss as a Metric for Data Storage Reliability" IEEE MASCOTS September 2014	 Normalized Magnitude of Data Loss (NOMDL) Fraction of Data Loss Per Year (FDLPY)* * equivalent to EAFDL

21

Zurich Research Laboratory

Non-Markov Analysis for EAFDL and MTTDL

- EAFDL evaluated in parallel with MTTDL
 - **r** : Replication Factor
 - e : Exposure Level: maximum number of copies that any data has lost
 - **T**_{*i*} : Cycles (Fully Operational Periods / Repair Periods)
 - P_{DL}: Probability of data loss during repair period
 - U : Amount of user data in system
 - Q : Amount of data lost upon a first-device failure

> MTTDL
$$\approx \sum_{i=1}^{m} E(T_i) \approx \frac{E(T)}{P_{\text{DL}}}$$
 EAFDL = $\frac{E(Q)}{E(T) \cdot U}$

MTTDL / EAFDL equations obtained using non-Markov Analysis

Theoretical Results

- n : number of storage devices
- c : amount of data stored on each device
- r : replication factor
- *b* : reserved rebuild bandwidth per device
- $1/\lambda$: mean time to failure of a storage device

4 to 64

- 12 TB
- 2, 3, 4

96 MB/s

10,000 h - Weibull distributions with shape parameters greater than one

> increasing failure rates over time

23

			_	
 	_	-		-

Reliability Results for Replication Factor of 2

- MTTDL
 - Declustered placement is not better than clustered one

			_	
_	_	 	-	-

Distributed Storage Systems

Replicated data for $D_1, D_2, ..., D_k$ is placed:

- on the same node
 - **Clustered Placement**

Declustered Placement

- MTTDL
 - Reduced repair time
 - Reduced vulnerability window
 - Increased exposure to subsequent device failures (-)
- EAFDL
 - Reduced amount of data lost

(+)

(+)

-					
			-		-
	-	_	-	-	
				_	
				_	
		_	-	L	-

Reliability Results for Replication Factor of 2

MTTDL

- Declustered placement not better than clustered one
- EAFDL
 - Independent of the number of nodes for clustered placement
 - Inversely proportional to the number of nodes for declustered placement
 - Declustered placement better than clustered one

Zurich Research Laboratory

_		-	-
	_	-	100
-		-	_

Reliability Results for Replication Factor of 3

MTTDL

- Inversely proportional to the number of nodes for clustered placement
- Independent of the number of nodes for declustered placement
 - Declustered placement better than clustered one
- EAFDL
 - Independent of the number of nodes for clustered placement
 - Inversely proportional to the cube of the number of nodes for declustered placement
 - > Declustered placement better than clustered one

Zurich Research Laboratory

the second se	
	And and the owner water of the owner owner owner owner owner
	statement and a statement with
and the second s	and the second second second second

Reliability Results for Replication Factor of 4

MTTR/MMTF ratio: $34.7/350 \simeq 0.1$ not very small

 \Rightarrow Deviation between theory and simulation

- MTTDL
 - Proportional to the square of the number of nodes for declustered placement
 - Declustered placement far superior to the clustered one
- EAFDL
 - Inversely proportional to the sixth power of the number of nodes for declustered placement
 - Declustered placement far superior to the clustered one

Theoretical EAFDL Results for Replication Factor of 3

- Theoretical results are accurate when devices are very reliable
 - MTTR/MTTF ratio is small
 - Quick assessment of EAFDL
 - No need to run lengthy simulations

Discussion

- EAFDL should be used cautiously
 - suppose EAFDL = 0.1%_
 - this does not necessarily imply that 0.1% of the user data is lost each year
 - System 1: MTTDL=10 years
 - 1% of the data lost upon loss
 - System 2: MTTDL=100 years 10% of the data lost upon loss
 - The desired reliability profile of a system depends on the
 - > application
 - > underlying service
 - If the requirement is that data losses should not exceed 1% in a loss event
 - > only <System 1> could satisfy this requirement

Summary

- Reviewed the widely used mean time to data loss (MTTDL) metric
- Demonstrated that unrecoverable errors are becoming a significant cause of user data loss
- Considered the expected annual fraction of data loss (EAFDL) metric
- Established that the EAFDL metric, together with the traditional MTTDL metric
 - provide a useful profile of the magnitude and frequency of data losses
 - can be jointly evaluated analytically in a general theoretical framework
- Derived the MTTDL/EAFDL in the case of replication-based storage systems that use clustered and declustered data placement schemes and for a
 - large class of failure time distributions
 - real-world distributions, such as Weibull and gamma
- Demonstrated the superiority of the declustered placement scheme

Future Work

 Apply the methodology developed to derive the reliability of systems using other redundancy schemes, such as erasure codes