The Sixth International Conference on Bioenvironment, Biodiversity and Renewable Energies BIONATURE 2015, May 24 - 29, 2015 - Rome, Italy

Biomass and biofuels for sustainable energy future

Prof Vladimir Strezov Department of Environmental Sciences Faculty of Science and Engineering Macquarie University, Sydney, Australia

FACULTY OF

SCIENCE

Outline

MACQUARIE UNIVERSITY

- Energy and sustainability
- Biomass properties
- Biomass processing technologies
- Production of biofuels

FACULTY OF

SCIENCE

 System engineering of biomass applications Biomass Processing Technologies

Vladimir Strezov Tim Evans

CRC Press

2

Energy Use and Economy

Total world primary energy production

Innovation is the central issue in economic prosperity. Michael Porter, Harvard Business School

Source: The Natural Edge Project

V′

The Natural Advantage of Nations (Vol.I): Business Opportunities, Innovation and Governance in the 21st Century http://www.naturaledgeproject.net/

Investments in renewable and biomass

energy

Definition of biomass

 any renewable material sourced from a biological origin and includes anthropogenic-modified material including products, by-products, residues and waste from agriculture, industry and the municipality

 $\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} + hv \rightarrow {\mathrm{CH}_2\mathrm{O}} + \mathrm{O}_2$

FACULTY OF

SCIENCE

Where hv is the energy from the sun and $\{CH_2O\}$ is the organic plant material with the basic form accepted to be that of glucose $C_6H_{12}O_6$

Source: McKendry, *Bioresource Technology*, 83, 37-46, 2002

	Plants	Terrestrial	Wood	Roots					
				Trunk					
		Aquatic		Leaves					
			Non-wood	Herbaceous plants					
				Grasses					
			Fruit	Soft fruit					
				Seeds					
E E				Hard shells					
'igi			Freshwater algae						
0			Saltwater	Saltwater Microalgae					
ca				Macroalgae	Macroalgae				
Biological origin	Animals	Tallow							
iol		Manure							
<u> </u>	Human	Sewage							
	Accidental (wastes	Weeds							
	and residues)	Agricultural wastes							
		Forest wastes							
		Industrial and commercial wastes							
	Deliberately cultivated (energy	Cultivation conditions	Soil	Biomass cultivated on agricultural soils					
	crops)			Biomass cultivated on marginal					
	1 /			soils and degraded land					
ute			Water	Freshwater	al (s,	bi Pr			
uction route				Saltwater	Natural (creeks, rivers, lakes, sea, ocean) Photobi reactor				
cti		Edible properties	Edible (food crops)						
npo			Non-edible						
prod	Natural biomass	Biomass replanted	Short regrowth rates						
Biomass		after harvesting	Long regrowth rates						
liom		Biomass not replaced							
		after harvesting	Biomass regeneration suppressed by other plants and weeds						

H:C to O:C diagram

Biomass fuel quality

- Lipid to carbohydrate ratio (L/C)
 - L/C >0.5 suitable for biodiesel production
 - □ African oil palm L/C = 4.7
- Carbohydrate to fibre ratio (C/F)
 C/F>5 indicates suitability for fermentation
- Moisture to Fixed Carbon ratio (moist/FC)
- Ash to Fixed Carbon ratio (ash/FC)
- Mineral matter properties

Grindability

FACULTY OF

SCIENCE

Energy and Sustainability

Sustainability Indicators for Power Generation Technologies

Sustainability = Benefits / Risks
 Risk = Hazard + Outrage (P. Sandman, 1993)

Parameters:

- Cost of electricity
- Greenhouse gas emissions
- Availability of resources and technological limitations
- Efficiency of energy generation
- Land use
- Water consumption
- Social impacts

FACULTY OF

Typical Costs for Electricity Generation

Greenhouse Gas Emissions for Electricity Generation GHG emissions

Land Use and Water Consumption

Technology	Footprint m ² /kWh	Water use kg/kWh				
Biomass DEC	0.553	90				
Biomass Res.	0.001	78				
Photovoltaic	0.045	0.01				
Wind	0.072	0.001				
Hydro	0.152	36				
Geothermal	0.05	12				
Gas	0.003	78				
Coal	0.004	78				
Nuclear	0.0005	107				
QUARIE FACULTY OF FACULTY OF						

MAC

UNIVERSITY

SCIENCE

Survey

- Solar is the most popular technology by a significant margin with 50% of support
- Wind has high public support at 13%
- Geothermal and biomass are not well understood in Australia
- Hydro is favoured when existing dams are used, new dams are highly controversial
- 70% of Australians want to move away from coal and >75% do not want nuclear introduced

FACULTY OF

SCIENCE

Sustainability Ranking

Ranking	Technology	Scaled Value					
1	Wind	0.55					
2	Hydro	0.57					
3	Geothermal	0.70					
4	PV	0.77					
5	Biomass Residues	0.78					
6	Gas	0.79					
7	Nuclear	0.79					
8	Coal	0.82					
9	Biomass Crops	1					
Sources: Evans et al., <i>Renewable and Sustainable Energy Reviews</i> , 13, 1082-1088, 2009 Evans et al., <i>Renewable and Sustainable Energy Reviews</i> , 14, 1419-1427, 2010 INIVERSITY FACULTY OF SCIENCE							

Processing of biomass fuels

Thermochemical	Combustion	Heat
Processing		Steam
		Electricity
	Gasification	Steam
		Heat
		Electricity
		Methane
		Hydrogen
	Pyrolysis	Charcoal/biochar
		Biogas
		Bio-oil
	Hydrothermal	Charcoal
	processing	Biogas
		Bio-oil
Biochemical	Anaerobic	Biogas
Processing	digestion	Digestate
	Fermentation	Ethanol
		Fermentate
Physicochemical	Esterification	Biodiesel
Processing		

Biomass combustion

Cofiring with coal:

1) direct co-firing where biomass is pre-mixed with coal and then fed into the combustor along with coal;

2) parallel co-firing, where biomass and coal are combusted in separate combustors and the steam streams produced from different combustors then converge;

3) indirect co-firing, when the biomass fuel is firstly gasified separately and the produced gas is then combusted in the downstream coal boiler.

FIGURE 3.1 Basic components of an integrated boiler system for biomass combustion.

Source: Strezov and Evans, Biomass Processing Technologies, CRC Press, 2014

MACQUARIE UNIVERSITY

FACULTY OF

19

Biofuel production in 2012

Biomass pyrolysis

Agricultural use of the biochar – Terra Preta Soils

Source: Glacer, http://www.carbonterra.eu/en/biochar/application/ Terra_Preta Terra Preta or "dark earth" are carbon-rich soils discovered in the Amazon region

Biochar is now used to produce Terra Preta type of fertile soils as it improves:

- Water holding capacity
- Soil aeration
- Improves microbial activity
- Stimulates nutrient dynamics
- Stops nutrient leaching
- Carbon mitigation

FACULTY OF

Paper Sludge Pyrolysis

Energy Balance for Paper Sludge Pyrolysis

For a dried paper sludge sample, the energy balance, becomes positive under stoichiometric and no-heat loss conditions at temperatures above 500 °C.

Strezov & Evans, Waste Management, 29, 1644-1648, 2009

24

Industrial-Scale Pyrolysis Facilities

Company	Process	Descr	iption]	Location	Capacity	F		Primary Product	References
Kior	Fast pyrolysis	Catalyti pyroly (reacto unkno	sis or type	Colu	mbus, OH	500 t/day (dry)	Pine w bioma	5	Oil	Kior Inc. 2013
Mitsubishi Heavy Industries/ Mie Chuo Kaihatsu	Slow pyrolysis	s Indirect rotary	heating kiln	Mie I Japa	Prefecture, an	100 t/day	Woodc	hips	Gas	Koga et al. 2007; JSIM 2001; Machida et al. 2004
Ensyn	Fast pyrolysis		ting ed bed		elander, consin	40 t/day (dry)	Hardwood wastes		Oil	Ringer et al. 2006; Ensyn 2013;
				Renf	rew, Canada	100 t/day (dry)	Wood 1	residues		Bridgwater 2012
Selection of Pilot/I	Demonstration-Sc	ale Pyrolysis	Plants in O	peratior	L					
Company	Process	Description	Locat	ion	Capacity	Feed	Primary Product	References	_	
Pytec	Fast pyrolysis	Ablative pyrolysis	North Ger	many	6 t/day (demo)	Wood	Oil	Butler et al. 2011 Bridgwater 2012 Pytec 2013		
University of Science and Technology of China	Fast pyrolysis	Fluidised bed	Hefei, Chi	na	120 kg/h (pilot), 15 t/day (demo)	Wood and agricultural waste	Oil	Zhu 2006 Wu et al. 2010		
Kansai Corporation	Carbonisation	Heated kiln	Kyoto, Jap	an	12 t/day	Rice husk,	Char	Kansai		

							Fytec 2015		
University of Science and Technology of China	Fast pyrolysis	Fluidised bed	Hefei, China	120 kg/h (pilot), 15 t/day (demo)	Wood and agricultural waste	Oil	Zhu 2006 Wu et al. 2010		
Kansai Corporation	Carbonisation	Heated kiln	Kyoto, Japan	12 t/day (demo)	Rice husk, greenwaste (pruned branches)	Char	Kansai Corporation 2013		
Lurgi/ Forschungszentrum Karlsruhe	Fast pyrolysis (followed by gasification of liquid and charcoal product)	Twin screw fluidised bed	Karlsruhe, Germany	20 kg/h (pilot), 12 t/day (demo)	Straw, agricultural waste	Oil	Henrich 2007 Butler et al. 2011 Meier et al. 2013		
BTG	Fast pyrolysis	Rotating cone	Netherlands	250 kg/h (dry)	Wood	Oil	Butler et al. 2011 Bridgwater 2012 BTG 2013		
Pacific Pyrolysis	Slow pyrolysis	Heated kiln	New South Wales, Australia	300 kg/h (pilot)	Various	Char	Pacific Pyrolysis 2013	a a 15	
Chaotech	Slow/ carbonisation	Heated kiln	Queensland, Australia	100 kg/h (pilot)	Sawdust	Char	Chaotech Pty Ltd. 2013	Source: Strezov and Evans, Biomass Processing	
Agri-therm	Fast pyrolysis	Fluidised bed	Mobile plants	5 t/day mobile plant	Agricultural wastes	Oil	Agri-therm 2013	Technologies, 2014	
ABRI-Tech	Fast pyrolysis	Auger	Ottawa, Canada	500 kg/h mobile plant	Wood waste	Oil	Meier et al. 2013	26	

Analysis	Pyrolysis Liquids	Light Fuel Oil	Heavy Fuel Oi
Water, wt %	20-30	0.025	0.1
Solids, wt %	< 0.5	0	0.2 - 1
Ash, wt %	< 0.2	0.01	0.03
Carbon, wt %	32-48	86	85.6
Hydrogen, wt %	7-8.5	13.6	10.3
Nitrogen, wt %	< 0.4	0.2	0.6
Oxygen, wt %	44-60	0	0.6
Sulphur, wt %	< 0.05	< 0.18	2.5
Vanadium, ppm	0.5	< 0.05	100
Sodium, ppm	38	< 0.01	20
Calcium, ppm	100	Not analysed	1
Potassium, ppm	220	< 0.02	1
Chloride, ppm	80	Not analysed	3
Stability	Unstable	Stable	Stable
Viscosity, cSt	15–35 at 40°C	3–7.5 at 40°C	351 at 50°C
Density (at 15°C), kg/dm³	1.1-1.3	0.89	0.94-0.96
Flash point, °C	40-110	60	100
Pour point, °C	-10 to -35	-15	21
Conradson carbon residue, wt %	14-23	9	12.2
LHV, MJ/kg	13–18	40.3	40.7
pH	2–3	Neutral	Not analysed
Distillability	Not distillable	160°C-400°C	

Typical Properties of Bio-Oil, and Light and Heavy Fuel Oils

Sewage sludge pyrolysis

Comparison of the volatiles, liquids and char of different sample at 550 °C.

	B (commercial origin)	C (domestic origin)	M (industrial origin)
Gas (wt%)	5.7	5.6	4.2
Liquid (wt%)	42.7	30.4	51.1
Char (wt%)	51.6	64.0	44.7
Heat of combustion of bio-gas at 550 °C (kJ/kg)	825	660	370
Energy required to heat sample to 550 °C (kJ/kg)	730	1180	708

Tomato cultivation with sewage sludge biochar

Concentration of metals and trace elements in wastewater sludge (WS) and sludge biochar and their bioaccumulation in fruits cultivated in soil amended with wastewater sludge (SS) and biochar (SB) comparing to Australian food standard limitations for heavy metals in food (mg kg⁻¹)

Elements	WS	Biochar	SS	SB	Aus food standards
Arsenic	5.9	8.8	0.04	0.02	1.0
Cadmium	2.6	4.7	0.06	0.04	0.05-2
Chromium	94	230	< 0.05	< 0.05	-
Copper	660	2100	7.5	6.2	10-70
Lead	85	160	< 0.01	< 0.01	1.5-2.5
Nickel	54	740	2.8	1.2	-
Selenium	3.8	7	< 0.05	< 0.05	1.0
Zinc	1200	3300	26	22	150
Antimony	4.7	8	< 0.01	0.01	1.5
Silver	16	29	< 0.01	< 0.01	-
Beryllium	1	1	< 0.01	< 0.01	-
Cobalt	430	21	0.09	0.03	-
Tin	130	310	< 0.05	< 0.05	50
Strontium	150	390	2.3	3.1	-
	FACULTY OF SCIENCE	Source	: Hossain et al., Pe	dosphere (in print)	35

Western Australia Mallee Tree Project

Soil salinity

Before clearing The system is in balance. Most water is used where it falls.

After clearing and irrigating

Evaporation and irrigation seepage concentrates saline groundwater at the surface.

Later Protective pl

Protective plant cover is killed by the accumulation of salt at the surface. The land is open to erosion.

Sources: http://vro.depi.vic.gov.au/dpi/vro/vrosite.nsf/pages/ lwm_salinity_management_irrigation

FACULTY OF SCIENCE

Continuous Biomass Converter at Vales Point Power Station

Algal biomass

Bio-oil Extraction from Algae

Algae Biomass

Algae Bio-oil

Algae Bio-char

Processing of microalgae

Conclusions

- Biomass will play one of the key roles in sustainable energy future
 - but, this is subject to how biomass is produced
- Standard classification of biomass properties and quality are needed
 - that will include physico-chemical properties, but also the biomass production route
- Some biomass technologies are already available, but the engineering systems needed for energy sustainability require further research

FACULTY OF

Acknowledgements

- Prof Tim Evans, Rio Tinto
- Ms Annette Evans, Macquarie University
- Prof Peter Nelson, Macquarie University
- Dr Joe Herbertson, Crucible Group
- Dr Kamal Hossain, Department of Primary Industries
- Dr Scott Grierson, James Cook University
- Dr Tao Kan, Macquarie University
- Mr Gary Leung, Macquarie University
- Dr Katrin Thommes, Macquarie University
 - Ms Cara Mulligan, University of Newcastle
- Mr Suraj Opatoku, Macquarie University

Thank you!

Contact: Vladimir Strezov vladimir.strezov@mq.edu.au

