Random Number Generators
with Multiple Streams
for Parallel Computing

Pierre L’Ecuyer

Université de Montréal, Canada
and
Inria—Rennes, France

Thanks to David Munger and Nabil Kemerchou

ADVCOMP 2015, Nice, July 2015

What do we want?

Sequences of numbers that look random.

What do we want?

Sequences of numbers that look random.

Example: Bit sequence (head or tail):

0111101001101101010011011001010001117. ..

Uniformity: each bit is 1 with probability 1/2.

What do we want?

Sequences of numbers that look random.

Example: Bit sequence (head or tail):

011117100110717101001101100101000111. ..

Uniformity: each bit is 1 with probability 1/2.
Uniformity and independance:
Example: 8 possibilities for the 3 bits 7 7 7:
000, 001, 010, 011, 100, 101, 110, 111
Want a probability of 1/8 for each, independently of everything else.

What do we want?

Sequences of numbers that look random. (&

Example: Bit sequence (head or tail):

011117100110717101001101100101000111. ..

Uniformity: each bit is 1 with probability 1/2.

Uniformity and independance:
Example: 8 possibilities for the 3 bits 7 7 7:

000, 001, 010, 011, 100, 101, 110, 111
Want a probability of 1/8 for each, independently of everything else.

For s bits, probability of 1/2° for each of the 2° possibilities.

Uniform distribution over (0, 1)

For simulation in general, we want (to imitate) a sequence Uy, Uy, Us, . ..

of independent random variables uniformly distributed over (0, 1).
We want Pla< U; < b =b—a.

\ 1 1 |
0 d b 1

Uniform distribution over (0, 1)

For simulation in general, we want (to imitate) a sequence Uy, Uy, Us, . ..

of independent random variables uniformly distributed over (0, 1).
We want Pla< U; < b =b—a.

\ 1 1 |
0 d b 1

Independence: For a random vector U = (U, ..., Us), we want
Plaj < Up < bjforj=1,...,8] = (b1 —a1)---(bs — as).
1

Uz

by
ar

0 al bl 1 Ul

This notion of independent uniform random variables is only a
mathematical abstraction. Perhaps it does not exist in the real world!
We only wish to imitate it (approximately).

This notion of independent uniform random variables is only a
mathematical abstraction. Perhaps it does not exist in the real world!
We only wish to imitate it (approximately).

Non-uniform variates:
To generate X such that P[X < x] = F(x):
X = F Y U) =inf{x: F(x) > U}.

This is inversion.

Example: If F(x) =1— e, take X = [—In(1 — U;)]/A.

Also other methods such as rejection, etc., when F~1 is costly to compute.

Random permutation:

1234567

Random permutation:

1234567
123467

5

Random permutation:

1234567
123467
13467

52

Random permutation:

1234567
123467 5
13467 52

3467 521

Random permutation:

1234567
123467 5
13467 52
3467 521

For n objets, choose an integer from 1 to n,

then an integer from 1 to n— 1, then from 1 to n— 2, ...

Each permutation should have the same probability.

To shuffle a deck of 52 cards: 52! ~ 22?° possibilities.

Physical devices for computers

Photon trajectories (sold by id-Quantique):

Thermal noise in resistances of electronic circuits

i |Ml\.m.m Il } TN il il}lﬁl LA
'\" 1 \l\'!‘ I "I’H’ ‘. “‘”I‘

(=1

— time

Thermal noise in resistances of electronic circuits

i

o fh ‘hW I‘Il\wuﬂn I L I } il N‘uu‘ ‘H I) ‘MHH I‘ml\“d b
o e

u“II |“| \‘IJMA N ‘h
e I\”wlv

™ e T n
010100111001

The signal is sampled periodically.

— time

Several commercial devices on the market (and hundreds of patents!).

None is perfect.

Several commercial devices on the market (and hundreds of patents!).

None is perfect. Can reduce the bias and dependence by combining bits.
E.g., with a XOR:

011000100110110100
11 0 1 1 1 0 1 O

Several commercial devices on the market (and hundreds of patents!).
None is perfect. Can reduce the bias and dependence by combining bits.
E.g., with a XOR:
0110001001 10110100
SR NSNS NSNS NS S
11 0 1 1 1 0 1 O

or (this eliminates the bias):

01 100010011011 0100
S22 - -2 -t = =0 P
0 1 1 0 1 0

Several commercial devices on the market (and hundreds of patents!).

None is perfect. Can reduce the bias and dependence by combining bits.
E.g., with a XOR:
0110001001 10110100

11 0 1 1 1 0 1 O

or (this eliminates the bias):
0110001001 10110100

0 1 1 0 1 0

Physical devices are essential for cryptology, lotteries, etc.
But for simulation, it is inconvenient, not always reliable, and has no (or
little) mathematical analysis.

A much more important drawback: it is not reproducible.

Reproducibility *

Simulations are often required to be exactly replicable, and always produce
exactly the same results on different computers and architectures,
sequential or parallel.

Important for debugging and to replay exceptional events in more details,
for better understanding.

Also essential when comparing systems with slightly different
configurations or decision making rules, by simulating them with common
random numbers (CRNs). That is, to reduce the variance in comparisons,
use the same random numbers at exactly the same places in all
configurations of the system, as much as possible. Important for sensitivity
analysis, derivative estimation, and effective stochastic optimization.

Algorithmic RNGs permit one to replicate without storing the random
numbers, which would be required for physical devices.

Algorithmic (pseudorandom) generator

S, finite state space; so, germe (état initial);
f: S — 8, transition function;
g : S —[0,1], output function.

S0

10

Algorithmic (pseudorandom) generator

S, finite state space; so, germe (état initial);
f: S — 8, transition function;
g : S —[0,1], output function.

S0

d

to

10

10

Algorithmic (pseudorandom) generator

S, finite state space; so, germe (état initial);
f: S — 8, transition function;
g : S —[0,1], output function.

f‘
Sp — S1

d

lp

10

Algorithmic (pseudorandom) generator

S, finite state space; so, germe (état initial);
f: S — 8, transition function;
g : S —[0,1], output function.

f‘
Sp — S1

o

to up

Algorithmic (pseudorandom) generator

S, finite state space; so, germe (état initial);
f: S — 8, transition function;
g : S —[0,1], output function.

10

f f f
SO S1 7ot 7 Sn
I |
ug u e Up

Algorithmic (pseudorandom) generator

S, finite state space; so, germe (état initial);
f: S — 8, transition function;
g : S —[0,1], output function.

10

f f f f f .
5p_]_ SO S1 7ot 7 Sn Sn+1
I A e
Up—1 Up up s Un Up+1

Period of {s,, n > 0}: p < cardinality of S.

11

b Lo

Up—1 000] uy T Un Upt1

Goal: if we observe only (ug, ug, . ..), difficult to distinguish from a
sequence of independant random variables over (0, 1).

11

b Lo

Up—1 000] uy T Un Upi1
Goal: if we observe only (ug, ug, . ..), difficult to distinguish from a
sequence of independant random variables over (0, 1).
Utopia: passes all statistical tests. Impossible!

Compromise between speed / good statistical behavior / predictability.

11

b Lo

Up—1 to i s Up Un+1
Goal: if we observe only (ug, ug, . ..), difficult to distinguish from a
sequence of independant random variables over (0, 1).
Utopia: passes all statistical tests. Impossible!

Compromise between speed / good statistical behavior / predictability.

With random seed sp, an RNG is a gigantic roulette wheel.
Selecting sp at random and generating s random numbers means spinning
the wheel and taking u = (up, ..., us—1).

Number of possibilities cannot exceed card(S).

Lottery machines: modify the state s, frequently.

11

b Lo

Up—1 to i s Up Un+1
Goal: if we observe only (ug, ug, . ..), difficult to distinguish from a
sequence of independant random variables over (0, 1).
Utopia: passes all statistical tests. Impossible!

Compromise between speed / good statistical behavior / predictability.

With random seed sp, an RNG is a gigantic roulette wheel.
Selecting sp at random and generating s random numbers means spinning
the wheel and taking u = (up, ..., us—1).

Number of possibilities cannot exceed card(S).

Lottery machines: modify the state s, frequently.

Uniform distribution over [0, 1]°.

If we choose sg randomly in S and we generate s numbers, this
corresponds to choosing a random point in the finite set

V. ={u=(uo,...,us—1) = (g(%0),..-,8(ss-1)), so € S}.

We want to approximate "u has the uniform distribution over [0, 1]%.”

12

Uniform distribution over [0, 1]°.

If we choose sg randomly in S and we generate s numbers, this
corresponds to choosing a random point in the finite set

V. ={u=(uo,...,us—1) = (g(%0),..-,8(ss-1)), so € S}.

We want to approximate "u has the uniform distribution over [0, 1]%.”

Measure of quality: Wg must cover [0, 1]° very evenly.

12

Uniform distribution over [0, 1]°.

If we choose sg randomly in S and we generate s numbers, this
corresponds to choosing a random point in the finite set

V. ={u=(uo,...,us—1) = (g(%0),..-,8(ss-1)), so € S}.

We want to approximate "u has the uniform distribution over [0, 1]%.”
Measure of quality: Wg must cover [0, 1]° very evenly.

Design and analysis:

1. Define a uniformity measure for W4, computable
without generating the points explicitly. Linear RNGs.

2. Choose a parameterized family (fast, long period, etc.)
and search for parameters that “optimize” this measure.

12

Baby example:

Un

Xn = 12 x,_1 mod 101;

Up = xn/101

Un—1

13

Baby example:

Un

Un—1

X, = 4809922 x,_1 mod 60466169 and v, = x,/60466169

14

Baby example:

Un

X, = 51 x,_1 mod 101;

up = x,/101.

Un—1

Good uniformity in one dimension, but not in two!

15

16

Myth 1. After 60 years of study and thousands of articles, this problem is
certainly solved and RNGs available in popular software must be reliable.

16

Myth 1. After 60 years of study and thousands of articles, this problem is
certainly solved and RNGs available in popular software must be reliable.

No.

Myth 2. | use a fast RNG with period length > 21000 5o it is certainly
excellent!

16

Myth 1. After 60 years of study and thousands of articles, this problem is
certainly solved and RNGs available in popular software must be reliable.

No.

Myth 2. | use a fast RNG with period length > 21000 5o it is certainly
excellent!

No.

Example: u, = (n/2%%9) mod 1 for n =0,1,2, ...

Other examples: Subtract-with-borrow, lagged-Fibonacci, xorwow, etc.

17

A single RNG does not suffice.

One often needs several independent streams of random numbers, e.g., to:

» Run a simulation on parallel processors.

» Compare systems with well synchronized common random numbers
(CRNs). Can be complicated to implement and manage when
different configurations do not need the same number of U;'s.

An existing solution: RNG with multiple streams and substreams. 18

Can create RandomStream objects at will, behave as “independent’
streams viewed as virtual RNGs. Can be further partitioned in substreams.

Example: With MRG32k3a generator, streams start 2127 values apart, and

each stream is partitioned into 2% substreams of length 27°.
One stream:
Current
state
N
start start next

stream substream substream

An existing solution: RNG with multiple streams and substreams. 18

Can create RandomStream objects at will, behave as “independent’
streams viewed as virtual RNGs. Can be further partitioned in substreams.

Example: With MRG32k3a generator, streams start 2127 values apart, and
each stream is partitioned into 2% substreams of length 27°.

RandomStream mystreaml = createStream ();
double u = randomUO1 (mystreaml);
double z = normalDist.inverseF (randomUO1l(mystreaml));

rewindSubstream (mystreaml) ;
forwardToNextSubstream (mystreaml);

rewindStream (mystreaml) ;

One stream:

Current
state

I—V_V_V_I'I'll lIllll'I'll lIlllllIII 'I—I—V_V_V_I'I'I_V—V—Ii'
start start next
stream substream substream

Comparing systems with CRNs:

a simple inventory example

X; = inventory level in morning of day j;

Dj = demand on day j, uniform over {0,1,...,L};
min(D;, X;) sales on day j;

Y; = max(0, X; — D;) inventory at end of day j;

Orders follow a (s, S) policy: If Yj <'s, order S — Y] items.
Each order arrives for next morning with probability p.

Revenue for day j: sales — inventory costs — order costs

=c-min(Dj, X;) —h-Y; — (K + k- (S —Yj))-I[an order arrives].

Two streams of random numbers, one substream for each run.
Same streams and substreams for all policies (s, S).

19

20

Inventory example: C code to simulate m days

double inventorySimulateOneRun (int m, int s, int S,
clrngStream *stream_demand, clrngStream *stream_order) {
// Simulates inventory model for m days, with the (s,S) policy.
int Xj = S, Yj; // Stock Xj in morning and Yj in evening.
double profit = 0.0; // Cumulated profit.
for (int j = 0; j < m; j++) {
// Generate and subtract the demand for the day.
Yj = Xj - clrngRandomInteger (stream_demand, O, L);
if (Yj < 0) Yj = 0; // Lost demand.
profit += ¢ * (Xj - Yi) - h * Yj;
if ((Yj < s) && (clrngRandomUO1 (stream_order) < p)) {
// We have a successful order.
profit == K + k * (S - Yj); // Pay for successful order.

Xj =8;
} else
Xj = Yj; // Order not received.
}
return profit / m; // Return average profit per day.

Comparing p policies with CRNs

// Simulate n runs with CRNs for p policies (s[k], S[k]), k=0,...
clrngStream* stream_demand = clrngCreateStream();

clrngStream* stream_order = clrngCreateStream();
for (int k = 0; k < p; k++) { // for each policy
for (int i = 0; i < n; i++) { // perform n runs

stat_profit[k, i] = inventorySimulateOneRun (m, s[k], S[k],
stream_demand, stream_order);
clrngForwardToNextSubstream (stream_demand);
clrngForwardToNextSubstream (stream_order);
}
clrngRewindStream (stream_demand) ;
clrngRewindStream (stream_order);

}

// Print and plot results

,p-1.

21

21

Comparing p policies with CRNs

// Simulate n runs with CRNs for p policies (s[k], S[k]), k=0,...,p-1.
clrngStream* stream_demand = clrngCreateStream() ;
clrngStream* stream_order = clrngCreateStream();
for (int k = 0; k < p; k++) { // for each policy
for (int i = 0; i < n; i++) { // perform n runs
stat_profit[k, i] = inventorySimulateOneRun (m, s[k], S[k],
stream_demand, stream_order);
clrngForwardToNextSubstream (stream_demand);
clrngForwardToNextSubstream (stream_order);
}
clrngRewindStream (stream_demand) ;
clrngRewindStream (stream_order);

}

// Print and plot results

We would like to perform these pn simulations on thousands of parallel
processors and obtain exactly the same results, using the same streams
and substreams.

Comparison with independent random numbers

157
37.94888
37.9665
37.96166
37.96999
37.9852

37.97977

37.97297

37.9867 37.97672
37.97797 37.98816
37.97435 37.9625
37.94725 37.9711

37.95081 37.94275

38.02

37.98
3796
37.94
37.92
379
37.88
37.86
3784
156

159
37.95314
37.97337

160
37.95718
37.98137

161
37.97194
37.94273

37.9712
37.98415
37.95655
37.96237
37.95863
37.95799

37.9678
37.97331
37.97504
37.98134
37.94999

37.96581
37.97905
37.95515

162
37.95955
37.96965

163
37.95281
37.97573
37.94671
37.97693
37.98817

164 165 166
37.96711 37.95221 37.95325
37.95425 37.96074 37.94185
37.95061 37.97238 37.95982
37.98191 3797217 37.95713
37.98168 37.97703 37.97145
37.96897 37.96675 37.9577
37.97736 3797275 37.97968
37.97844 37.99203 37.96531 37.97226
37.97144 37.97409 37.96631 37.96764
37.97656 37.97212 37.96762 37.96429
37.95548 37.96573 37.93949 37.93839
37.94849 37.954

37.96368

IRN

157
158 59

166

& = =

167

37.94465
37.95575
37.96138
37.95672
37.96523
37.93934
37.94759
37.93976

22

A

23

Comparison with CRNs

156 157 158 159 160 161
50 37.94537 37.94888 37.95166 37.95319 37.95274 37.95318
51 37.9574 37.96169 37.96379 37.96524 37.96546 37.95726

37.97117 37.97402 37.97476 37.97492 37.971 37.96879 37.95154 37.94626
37.97436 37.96268 37.95589 37.94995

37.96925 37.95986 37.95186
37.96992 37.96401 37.95343
37.96989 37.96227 37.95519
37.96703 37.95981 37.95107
37.97207 37.97358 37. 37.95461 37.94622
37.95772 37.96302 37.96664 37.94695
37.95678

CRN

§37.8837.9 B37.937.92 B37.92.37.94 037.94-37.96 B37.96-37.98 M37.9838

A

[m] = =

24

Parallel computers

Processing elements (PEs) or “cores”’ are organized in a hierarchy.
Many in a chip. SIMD or MIMD or mixture. Many chips per node, etc.
Similar hierarchy for memory, usually more complicated and with many
types of memory and access speeds.

Since about 10 years, clock speeds of processors no longer increase, but
number of cores increases instead. Roughly doubles every 1.5 to 2 years.

Simulation algorithms (such as for RNGs) must adapt to this.

Some PEs, e.g., on GPUs, only have a small past-access (private) memory
and have limited instruction sets.

25

Streams for parallel RNGs
Why not a single source of random numbers (one stream) for all threads?
Bad because (1) too much overhead for transfer and (2) non reproducible.

A different RNG (or parameters) for each stream? Inconvenient and
limited: hard to handle millions of streams.

25

Streams for parallel RNGs
Why not a single source of random numbers (one stream) for all threads?
Bad because (1) too much overhead for transfer and (2) non reproducible.

A different RNG (or parameters) for each stream? Inconvenient and
limited: hard to handle millions of streams.

Splitting: Single RNG with equally-spaced starting points for streams and
for substreams. Recommended when possible. Requires fast computing of
siyy = Y(s;) for large v, and single monitor to create all streams.

25

Streams for parallel RNGs

Why not a single source of random numbers (one stream) for all threads?
Bad because (1) too much overhead for transfer and (2) non reproducible.

A different RNG (or parameters) for each stream? Inconvenient and
limited: hard to handle millions of streams.

Splitting: Single RNG with equally-spaced starting points for streams and
for substreams. Recommended when possible. Requires fast computing of
siyy = Y(s;) for large v, and single monitor to create all streams.

Random starting points: acceptable if period p is huge.
For period p, and s streams of length ¢,

Ploverlap somewhere] = P, ~ s%(/p.

Example: if s = ¢ = 220, then s/ = 2%0.
For p = 2128, P, ~ 278,

26
How to use streams in parallel processing?
One can use several PEs to fill rapidly a large buffer of random numbers,
and use them afterwards (e.g., on host processor). Many have proposed
software tools to do that. But this is rarely what we want.

26

How to use streams in parallel processing?

One can use several PEs to fill rapidly a large buffer of random numbers,
and use them afterwards (e.g., on host processor). Many have proposed
software tools to do that. But this is rarely what we want.

Typically, we want independent streams produced and used by the threads.
E.g., simulate the inventory model on each PE.

One stream per PE? One per thread? One per subtask? No.

For reproducibility and effective use of CRNs, streams must be assigned
and used at a logical (hardware-independent) level, and it should be
possible to have many distinct streams in a thread or PE at a time.

Single monitor to create all streams. Perhaps multiple creators of streams.
To run on GPUs, the state should be small, say at most 256 bits.
Some small robust RNGs such as LFSR113, MRG31k3p, and MRG32k3a

are good for that. Also some counter-based RNGs.

Other scheme: streams that can split to create new children streams.

Vectorized RNGs

Typical use: Fill a large array of random numbers.

Saito and Matsumoto (2008, 2013): SIMD version of the Mersenne
twister MT19937. Block of successive numbers computed in parallel.

Brent (2007), Nadapalan et al. (2012), Thomas et al. (2009): Similar
with xorshift+Weyl and xorshift-+sum.

Bradley et al. (2011): CUDA library with multiple streams of flexible
length, based on MRG32k3a and MT19937.

Barash and Shchur (2014): C library with several types of RNGs, with
jump-ahead facilities.

27

Example of “poor” multiple streams:

good RNG but visible dependence between the streams.
Image synthesis on GPUs, with one stream per pixel.
(Thanks to Steve Worley, from Worley Laboratories).

28

Linear multiple recursive generator (MRG)

Xp = (81Xp—1 + ++ + akxp—k) mod m, Up = Xp/m.

State: sp = (Xp—k+1,---,Xn). Max. period: p = mk — 1.

31

31

Linear multiple recursive generator (MRG)

Xp = (81Xp—1 + ++ + akxp—k) mod m, Up = Xp/m.

State: s, = (Xp—k+1,---,Xn). Max. period: p = mk — 1.

Numerous variants and implementations.
For k = 1: classical linear congruential generator (LCG).

Structure of the points V,:

X0, - - -, Xk—1 can take any value from 0 to m — 1, then xj, Xx41,... are
determined by the linear recurrence. Thus,
(X5 -y Xk—1) = (X0y -y Xk—1, Xks - - -, Xs—1) is @ linear mapping.

It follows that W, is a linear space; it is the intersection of a lattice with
the unit cube.

Un

el

Xn = 12 x,_1 mod 101;

up = x,/101

32

Example of bad structure: lagged-Fibonacci

Xn = (Xp—r + Xn—k) mod m.

Very fast, but bad.

33

Example of bad structure: lagged-Fibonacci

Xp = (Xp—r + Xp—k) mod m.
Very fast, but bad. We always have u,_x + up—r — u, = 0 mod 1.

This means: u,_x + up—, — u, = q for some integer q.

All points (u, k, Uy, u,) belong to only two parallel planes in [0, 1)3.

33

34

Example: subtract-with-borrow (SWB)

State (Xp_48,- - -, Xn_1,Cn1) Where x, € {0,...,231 —1} and ¢, € {0,1}:

31
Xn = (Xn—8 — Xn—48 — Cn—l) mod 277,
¢hn = 1 if xp_8 — Xn_ag — Cch_1 <0, ¢, = 0 otherwise,
31
up = xp/2>%,

Period p ~ 2179 ~ 1.67 x 10%%.

34

Example: subtract-with-borrow (SWB)

State (Xp_48,- - -, Xn_1,Cn1) Where x, € {0,...,231 —1} and ¢, € {0,1}:

31
Xn = (Xn—8 — Xn—48 — Cn—l) mod 277,
¢hn = 1 if xp_8 — Xn_ag — Cch_1 <0, ¢, = 0 otherwise,
31
up = xp/2>%,

Period p ~ 2179 ~ 1.67 x 10%%.

In Mathematica versions < 5.2:
modified SWB with output i, = x2,/2%? + x2,41/23L.

Great generator?

34

Example: subtract-with-borrow (SWB)

State (Xp_48,- - -, Xn_1,Cn1) Where x, € {0,...,231 —1} and ¢, € {0,1}:

31
Xn = (Xn—8 — Xn—48 — Cn—l) mod 277,
¢hn = 1 if xp_8 — Xn_ag — Cch_1 <0, ¢, = 0 otherwise,
31
up = xp/2>%,

Period p ~ 2179 ~ 1.67 x 10%%.

In Mathematica versions < 5.2:
modified SWB with output i, = x2,/2%? + x2,41/23L.

Great generator? No, not at all; very bad...

35

All points (u,, U140, Unsag) belong to only two parallel planes in [0, 1)3.

Ferrenberg et Landau (1991). “Critical behavior of the three-dimensional
Ising model: A high-resolution Monte Carlo study.”

Ferrenberg, Landau et Wong (1992). “Monte Carlo simulations: Hidden
errors from “good” random number generators.”

35

All points (u,, U140, Unsag) belong to only two parallel planes in [0, 1)3.

Ferrenberg et Landau (1991). “Critical behavior of the three-dimensional
Ising model: A high-resolution Monte Carlo study.”

Ferrenberg, Landau et Wong (1992). “Monte Carlo simulations: Hidden
errors from “good” random number generators.”

Tezuka, L'Ecuyer, and Couture (1993). “On the Add-with-Carry and
Subtract-with-Borrow Random Number Generators.”

Couture and L'Ecuyer (1994) “On the Lattice Structure of Certain Linear
Congruential Sequences Related to AWC/SWB Generators.”

36

Combined MRGs.

Two [or more] MRGs in parallel:

X1,p = (a11Xin-1+4 -+ aLkX1,n—k) mod my,

Xo,m = (a21x2n-1+ -+ a2kX2,n—k) mod my.
One possible combinaison:
zn = (xin—x2n) mod mi; wu, = zp/mu;

L'Ecuyer (1996): the sequence {up,, n > 0} is also the output of an MRG

of modulus m = mymy, with small added “noise”. The period can reach
(mf —1)(m§ —1)/2.
Permits one to implement efficiently an MRG with large m and several

large nonzero coefficients.

Parameters: L'Ecuyer (1999); L'Ecuyer et Touzin (2000).
Implementations with multiple streams.

37

A recommendable generator: MRG32k3a

Choose six 32-bit integers:
X_2,%-1,%0 in {0,1,...,4294967086} (not all 0) and
y—2,¥-1,¥0 in {0,1,...,4294944442} (not all 0). For n=1,2,..., let

x, = (1403580x, » —810728x,-3) mod 4294967087,
Ve = (527612y,_1 — 1370589y,_3) mod 4294944443
[

un = [(xn—yn) mod 4294967087]/4294967087.

37

A recommendable generator: MRG32k3a

Choose six 32-bit integers:
X_2,%-1,%0 in {0,1,...,4294967086} (not all 0) and
y—2,¥-1,¥0 in {0,1,...,4294944442} (not all 0). For n=1,2,..., let

x, = (1403580x, » —810728x,-3) mod 4294967087,
Ve = (527612y,_1 — 1370589y,_3) mod 4294944443
[

un = [(xn—yn) mod 4294967087]/4294967087.

(Xn—2, Xn_1, Xn) Visits each of the 42949670873 — 1 possible values.
(Vn—2, Yn_1, Yn) Visits each of the 42949444433 — 1 possible values.

The sequence ug, u1, U, . .. is periodic, with 2 cycles of period

p 29 ~ 3.1 x 10°7.

A recommendable generator: MRG32k3a

Choose six 32-bit integers:

X-2,X-1,X0
Y-2,¥Y-1, %0

Xn

Yn
Un

(Xn—27 Xn—1,

in {0,1,...,4294967086} (not all 0) and
in {0,1,...,4294944442} (not all 0). For n=1,2,..., let

— (1403580x,_, — 810728x,_3) mod 4294967087,
= (527612y,_1 — 1370580y,_3) mod 4294044443,
[(xn — yn) mod 4294967087]/4294967087.

xp) Visits each of the 42949670873 — 1 possible values.

(Vn—2, Yn_1, Yn) Visits each of the 42949444433 — 1 possible values.

The sequence ug, u1, U, . .. is periodic, with 2 cycles of period

p 29 ~ 3.1 x 10°7.

Robust and reliable for simulation.

Used by SAS, R, MATLAB, Arena, Automod, Witness, Spielo gaming, ...

37

A similar (faster) one: MRG31k3p

State is six 31-bit integers:
Two cycles of period p ~ 218

Recurrence is implemented via shifts, masks, and additions.

38

Faster RNG: operations on blocks of bits.
Example: Choose xo € {2,...,23 — 1} (32 bits). Evolution:

Xp—1 = 00010100101001101100110110100101

39

Faster RNG: operations on blocks of bits.

Example: Choose xg € {2,...,232 — 1} (32 bits). Evolution:

(xn—1 < 6) XOR x,_1

Xp—1 = ‘00010100101001101100110110100101‘
‘00101001101100110110100101 ‘
‘00111101000101011010010011100101‘

39

39

Faster RNG: operations on blocks of bits.
Example: Choose xg € {2,...,232 — 1} (32 bits). Evolution:

B = ((Xn_l < 6) XOR Xn_1) > 13

Xp—1 = 00010100101001101100110110100101]
00101001101100110110100101 |
00111101000101011010010011100101

B = \ 0011110100010101101,

Faster RNG: operations on blocks of bits.
Example: Choose xg € {2,...,232 — 1} (32 bits). Evolution:

B = ((xn—1 < 6) XOR xp_1) > 13
xp = (((xp—1 with last bit at 0) <« 18) XOR B).
Xp_1 = 00010100101001101100110110100101

00101001101100110110100101 \
00111101000101011010010011100101
B = \ 0011110100010101101,
Xn—1 00010100101001101100110110100100
0011011010010 \

39

Faster RNG: operations on blocks of bits.
Example: Choose xg € {2,...,232 — 1} (32 bits). Evolution:

Xn—1 =

Xpn—1

Xp =

B

Xn

((xn—1 < 6) XOR xp_1) > 13
(((xp—1 with last bit at 0) < 18) XOR B).

00010100101001101100110110100101
00101001101100110110100101
00111101000101011010010011100101
0011110100010101101
0001010010100110110011011010010
0011011010010
00110110100100011110100010101101

39

39

Faster RNG: operations on blocks of bits.
Example: Choose xg € {2,...,232 — 1} (32 bits). Evolution:

B = ((xn—1 < 6) XOR xp_1) > 13
xp = (((xp—1 with last bit at 0) <« 18) XOR B).
Xp_1 = 00010100101001101100110110100101

00101001101100110110100101
00111101000101011010010011100101

B = 0011110100010101101
Xp—1 0001010010100110110011011010010
0011011010010
Xp = 00110110100100011110100010101101

The first 31 bits of xy, xp, x3, ..., visit all integers from 1 to 2147483647
(= 23! — 1) exactly once before returning to xg.

39

Faster RNG: operations on blocks of bits.
Example: Choose xg € {2,...,232 — 1} (32 bits). Evolution:

B = ((xn—1 < 6) XOR xp_1) > 13
xp = (((xp—1 with last bit at 0) <« 18) XOR B).
Xp_1 = 00010100101001101100110110100101

00101001101100110110100101
00111101000101011010010011100101

B = 0011110100010101101
Xp—1 0001010010100110110011011010010
0011011010010
Xp = 00110110100100011110100010101101

The first 31 bits of xy, xp, x3, ..., visit all integers from 1 to 2147483647
(= 23! — 1) exactly once before returning to xg.

For real numbers in (0,1): u, = x,/(23% + 1).

More realistic: LFSR113

Take 4 recurrences on blocks of 32 bits, in parallel.
The periods are 231 — 1,229 — 1,228 _ 1 225 _ 1.

We add these 4 states by a XOR, then we divide by 232 + 1.

The output has period ~ 2113 ~ 1034,

40

General linear recurrences modulo 2

Xn

Yn
Un

Ax,_1 mod 2
B x, mod 2

ijzl Yn,j—12_j

(Xn,07 s)Xn,k—l)ta
(Yn,Oa cee 7yn,W—1)t7
-Yno0 Yn1 Yn2 -,

(state, k bits)
(w bits)
(output)

41

41

General linear recurrences modulo 2

X, = Ax,_1 mod?2 = (X,,70, o ,X,,yk_]_)t, (state, k bitS)
y, = Bx,mod?2 = (Vnos- s Ynw-1)% (w bits)
unp = ijzl Yn,j—12_J = .Yno0Yn1Yn2 ", (OUtPUt)

Clever choice of A: transition via shifts, XOR, AND, masks, etc., on
blocks of bits. Very fast.

Special cases: Tausworthe, LFSR, GFSR, twisted GFSR, Mersenne twister,
WELL, xorshift, etc.

41

General linear recurrences modulo 2

X, = Ax,_1 mod?2 = (X,,70, o ,X,,yk_]_)t, (state, k bitS)
y, = Bx,mod?2 = (Vnos- s Ynw-1)% (w bits)
unp = ijzl Yn,j—12_J = .Yno0Yn1Yn2 ", (OUtPUt)

Clever choice of A: transition via shifts, XOR, AND, masks, etc., on
blocks of bits. Very fast.

Special cases: Tausworthe, LFSR, GFSR, twisted GFSR, Mersenne twister,
WELL, xorshift, etc.

Each coordinate of x,, and of y, follows the recurrence
Xpj = (Q1Xp—1j + - + QkXn—k),
with characteristic polynomial

k—1

'D(Z):Zk_alz T — s — o1z — o, = det(A — zI).

Max. period: p = 2% — 1 reached iff P(z) is primitive.

Uniformity measures. Example: k = 10, 2! = 1024 points

1

Upgl [P W0 eee oon s

Un

Uniformity measures. Example: k = 10, 2! = 1024 points

1 s

Unt1

Un

Uniformity measures. Example: k = 10, 2! = 1024 points

1 rer

Unt1

Un

43

Uniformity measures based on equidistribution.

Example: we partition [0,1)% in 2° equal intervals.
Gives 25¢ cubic boxes.

For each s and /, the s/ bits that determine the box can be written as
M xo. Each box contains 2575¢ points of W iff M has (full) rank s¢. We
then say that those points are equidistributed for £ bits in s dimensions.

43

Uniformity measures based on equidistribution.

Example: we partition [0,1)% in 2° equal intervals.
Gives 25¢ cubic boxes.
For each s and /, the s/ bits that determine the box can be written as

M xo. Each box contains 2575¢ points of W iff M has (full) rank s¢. We
then say that those points are equidistributed for £ bits in s dimensions.

If this holds for all s and ¢ such that s¢ < k, the RNG is called maximally
equidistributed.

43

Uniformity measures based on equidistribution.

Example: we partition [0,1)% in 2° equal intervals.
Gives 25¢ cubic boxes.

For each s and /, the s/ bits that determine the box can be written as
M xo. Each box contains 2575¢ points of W iff M has (full) rank s¢. We
then say that those points are equidistributed for £ bits in s dimensions.

If this holds for all s and ¢ such that s¢ < k, the RNG is called maximally
equidistributed.

Can be generalized to rectangular boxes...

Examples: LFSR113, Mersenne twister (MT19937), the WELL family, ...

44
Impact of a matrix A that changes the state too slowly.

Experiment: take an initial state with a single bit at 1.
Try all k possibilities and take the average of the k values of u, obtained
for each n.

WELL19937 vs MT19937; moving average over 1000 iterations.

0.5 MWWW "

0.4
0.3
0.2

0.1

0 200000 400000 600000 800000

45

Linear recurrence modulo m

State (vector) x, evolves as
X, = Ax,_1 mod m.
Jumping Ahead:

v

Xp+y = (AY mod m)x, mod m.

The matrix AY mod m can be precomputed for selected values of v.

If output function u, = g(x,) is also linear, one can study the uniformity
of each W, by studying the linear mapping. Many tools for this.

Combined linear/nonlinear generators

Linear generators fail statistical tests built to detect linearity.

46

46

Combined linear/nonlinear generators

Linear generators fail statistical tests built to detect linearity.
To escape linearity, we may

» use a nonlinear transition f;

» use a nonlinear output transformation g;

» do both;
» combine RNGs of different types.

There are various proposals in this direction. Many behave well empirically.

L'Ecuyer and Granger-Picher (2003): Large linear generator modulo 2
combined with a small nonlinear one, via XOR.

47

Counter-Based RNGs

State at step n is just n, so f(n) = n+ 1, and g(n) is more complicated.
Advantages: trivial to jump ahead, can generate a sequence in any order.

Typically, g is a bijective block cipher encryption algorithm.
It has a parameter c called the encoding key.
One can use a different key ¢ for each stream.

Examples: MD5, TEA, SHA, AES, ChaCha, Threefish, etc.
The encoding is often simplified to make the RNG faster.
Threefry and Philox, for example. Very fast!

gc : (k-bit counter) — (k-bit output), period p = 2.

E.g.: k=128 or 256 or 512 or 1024.

47

Counter-Based RNGs

State at step n is just n, so f(n) = n+ 1, and g(n) is more complicated.
Advantages: trivial to jump ahead, can generate a sequence in any order.

Typically, g is a bijective block cipher encryption algorithm.
It has a parameter c called the encoding key.
One can use a different key ¢ for each stream.

Examples: MD5, TEA, SHA, AES, ChaCha, Threefish, etc.
The encoding is often simplified to make the RNG faster.
Threefry and Philox, for example. Very fast!

gc : (k-bit counter) — (k-bit output), period p = 2.

E.g.: k=128 or 256 or 512 or 1024.

Changing one bit in n should change 50% of the output bits on average.

No theoretical analysis for the point sets V.
But some of them perform very well in empirical statistical tests.

48

An API for parallel RNGs in OpenCL

OpenCL is an emerging standard for programming GPUs and other
similar devices. It extends (a subset of) the plain C language.
Limitations: On the device, no pointers to functions, no dynamic memory
allocation, ... Low level.

cIRNG is an API and library for RNGs in OpenCL, currently developed at

Université de Montréal, in collaboration with Advanced Micro Devices
(AMD).

Streams can be created only on the host, and can be used either on the
host or on a device (such as by threads or work items on a GPU).

Must use a copy of the stream in private memory on the GPU device to
generate random numbers.

Currently implements MRG32k3a, MRG31k3p, LFSR113, and Philox.

Also clProbDist and clQMC.

49

Host interface (subset)

Preprocessor replaces clrng by the name of desired base RNG.

On host computer, streams are created and manipulated as arrays of
streams.

typedef struct ... clrngStreamState;
State of a random stream. Definition depends on generator type.
typedef struct ... clrngStream;
Current state of stream, its initial state, and initial state of current substream.

50

clrngStream* clrngAllocStreams(size_t count, size_ t* bufSize,
clrngStatus* err);

Reserve memory space for count stream objects.

clrngStream* clrngCreateStreams(clrngStreamCreator* creator,
size_t count, size_t* bufSize, clrngStatus* err);

Reserve memory and create (and return) an array of count new streams.

clrngStatus clrngCreateOverStreams(clrngStreamCreator* creator,
size_t count, clrngStream* streams) ;

Create new streams in preallocated buffer.

clrngStream* clrngCopyStreams(size_t count, const clrngStream* streams,
clrngStatus* err);

Reserves memory and return in it a clone of array streams.

clrngStatus clrngCopyOverStreams(size_t count, clrngStream* destStreams,
const clrngStream* srcStreams);

Copy (restore) srcStreams over destStreams, and all count stream inside.

clrngStatus clrngDestroyStreams(clrngStream* streams);

51
cl_double clrngRandomUO1(clrngStream* stream);

cl.int clrngRandomInteger(clrngStream* stream, cl_int i, cl_int j);
clrngStatus clrngRandomUOlArray(clrngStream* stream, size_t count,
cl_double* buffer);
clrngStatus clrngRandomIntegerArray(clrngStream* stream,
clint i, cl.int j, size_t count, cl_int* buffer);

clrngStatus clrngRewindStreams(size_t count, clrngStream* streams);
Reinitialize streams to their initial states.
clrngStatus clrngRewindSubstreams(size_t count, clrngStream* streams);

Reinitialize streams to the initial states of their current substreams.
clrngStatus clrngForwardToNextSubstreams(size_t count,
clrngStream* streams);

clrngStatus clrngDeviceRandomUOlArray(size_t streamCount,
cl mem streams, size_t numberCount, cl_mem outBuffer,
cl_uint numQueuesAndEvents, cl_command_queue* commQueues,
cl_uint numWaitEvents, const cl_event* waitEvents,
cl_event* outEvents);

Fill buffer at outBuffer with numberCount uniform random numbers, using
streamCount work items.

52
Interface on Devices
Functions that can be called on a device (such as a GPU):

clrngStatus clrngCopyOverStreams(size_t count, clrngStream* destStreams,
const clrngStream* srcStreams);
clrngStatus clrngCopyOverStreamsFromHost (size_t count,
clrngStream* destStreams,
__global const clrngHostStream* srcStreams);
clrngStatus clrngCopyOverStreamsToHost(size_t count,
__global const clrngHostStream* destStreams,
clrngStream* srcStreams);

cl_double clrngRandomUO1(clrngStream* stream);
cl.int clrngRandomInteger(clrngStream* stream, cl_int i, cl_int j);
clrngStatus clrngRandomUOlArray(clrngStream* stream, size_t count,
cl_double* buffer);
clrngStatus clrngRandomIntegerArray(clrngStream* stream,
cl_int i, cl_int j, size_t count, cl_int* buffer);

clrngStatus clrngRewindStreams(size_t count, clrngStream* streams);
clrngStatus clrngRewindSubstreams(size_t count, clrngStream* streams);
clrngStatus clrngForwardToNextSubstreams(size_t count,

clrngStream* streams);

u]
o)
I
ul
it

53

Inventory example

__kernel void inventorySimulPoliciesGPU (int m, int p,
int *s, int *S, int n2,
__global clrngStreams *streams_demand,
__global clrngStreams *streams_order,
__global double *stat_profit) {
// Each of the nl*p work items simulates n2 runs.

int gid = get_global_id(0); // Id of this work item.

int nlp = get_global_size(0); // Total number of work items.

int n1 = nl / p; // Number of streams.

int k= gid / nl; // Policy index for this work item.
int j = gid % ni; // Index of stream for this work item.

// Make local copies of the stream states, in private memory.
clrngStream stream_demand_d, stream_order_d;
clrngCopyOverStreamsFromHost (1, &stream_demand_d, &streams_demand[j]l);
clrngCopyOverStreamsFromHost (1, &stream_order_d, &streams_order[jl);
for (int i = 0; i < n2; i++) {
stat_profit[i * nlp + gid] = inventorySimulateOneRun(m, s[k], S[k],
&stream_demand_d, &stream_order_d);
clrngForwardToNextSubstreams (1, &stream_demand_d);
clrngForwardToNextSubstreams (1, &stream_order_d);

Empirical statistical Tests

Hypothesis #o: “{ug, u1, u2, ...} are ii.d. U(0,1) r.v.'s".

We know that Hjg is false, but can we detect it ?

54

54

Empirical statistical Tests

Hypothesis #o: “{ug, u1, u2, ...} are ii.d. U(0,1) r.v.'s".
We know that Hjg is false, but can we detect it ?

Test:
— Define a statistic T, function of the u;, whose distribution under Hy is

known (or approx.).
— Reject Hp if value of T is too extreme. If suspect, can repeat.

Different tests detect different deficiencies.

54

Empirical statistical Tests

Hypothesis #o: “{ug, u1, u2, ...} are ii.d. U(0,1) r.v.'s".
We know that Hjg is false, but can we detect it ?
Test:

— Define a statistic T, function of the u;, whose distribution under Hy is
known (or approx.).

— Reject Hp if value of T is too extreme. If suspect, can repeat.
Different tests detect different deficiencies.
Utopian ideal: T mimics the r.v. of practical interest. Not easy.

Ultimate dream: Build an RNG that passes all the tests? Formally
impossible.

54

Empirical statistical Tests

Hypothesis #o: “{ug, u1, u2, ...} are ii.d. U(0,1) r.v.'s".
We know that Hjg is false, but can we detect it ?
Test:

— Define a statistic T, function of the u;, whose distribution under Hy is
known (or approx.).
— Reject Hp if value of T is too extreme. If suspect, can repeat.

Different tests detect different deficiencies.
Utopian ideal: T mimics the r.v. of practical interest. Not easy.

Ultimate dream: Build an RNG that passes all the tests? Formally
impossible.

Compromise: Build an RNG that passes most reasonable tests.
Tests that fail are hard to find.
Formalization: computational complexity framework.

Example: A collision test

Upt1

Throw n =10 points in k = 100 boxes.

Un

55

Example: A collision test

Upt1

Throw n =10 points in k = 100 boxes.

Un

55

Example: A collision test

Upt1

Throw n =10 points in k = 100 boxes.

Un

55

Example: A collision test

Upt1

Throw n =10 points in k = 100 boxes.

Un

55

Example: A collision test

Upt1

Throw n =10 points in k = 100 boxes.

Un

55

Example: A collision test

Upt1

Throw n =10 points in k = 100 boxes.

Un

55

Example: A collision test

Upt1

Throw n =10 points in k = 100 boxes.

Un

55

Example: A collision test

Upt1

Throw n =10 points in k = 100 boxes.

Un

55

Example: A collision test

Upt1

Throw n =10 points in k = 100 boxes.

Un

55

Example: A collision test

Upt1

Throw n =10 points in k = 100 boxes.

Un

55

Example: A collision test

Upt1

Un

1
Throw n =10 points in k = 100 boxes.

55

55

Example: A collision test

Upt1

Throw n =10 points in k = 100 boxes.
Here we observe 3 collisions. P[C > 3| Ho] ~ 0.144.

Collision test

Partition [0,1)° in k = d° cubic boxes of equal size.

Generate n points (ujs, - . ., Ujs1s—1) in [0,1)%.

C = number of collisions.

56

56

Collision test

Partition [0,1)° in k = d° cubic boxes of equal size.
Generate n points (ujs, - . ., Ujs1s—1) in [0,1)%.

C = number of collisions.

Under Ho, C = Poisson of mean \ = n?/(2k), if k is large and X is small.

If we observe ¢ collisions, we compute the p-values:

pT(c) = P[X>c|X~ Poisson()\)],
p (c) = P[X<c|X~ Poisson(}\)],

We reject Ho if pT(c) is too close to 0 (too many collisions)
or p~(c) is too close to 1 (too few collisions).

Example: LCG with m = 101 and a = 12:

Uny1

1

A

C p (9

1/2 0 06281

57

Example: LCG with m = 101 and a = 12:

1 L3
Uny1 .
0 1 Un
n A C p (O
10 1/2 0 0.6281
20 2 0 0.1304

57

Example: LCG with m = 101 and a = 12:

Uny1

1

n A C p (O
10 1/2 0 0.6281
20 2 0 0.1304
40 8 1 0.0015

57

LCG with m = 101 and a = 51;

1
Upt1
0 Un
n A C pt(C)
10 1/2 1 0.3718

58

LCG with m = 101 and a = 51;

1 *
Upt1 ®
. ®
.’
0 Un
n A C p+(C)
10 1/2 1 0.3718
20 2 5

0.0177

58

LCG with m = 101 and a = 51;

Uni1

n A C pt(Q)
10 1/2 1 03718

20 2 5 00177

40 8 20 22x10°°

Un

58

59

SWB in Mathematica

For the unit cube [0,1)3, divide each axis in d = 100 equal intervals. This
gives k = 1003 = 1 million boxes.

Generate n = 10000 vectors in 25 dimensions: (U, ..., Uas).
For each, note the box where (Up, Uzg, U24) falls.
Here, A = 50.

59

SWB in Mathematica

For the unit cube [0,1)3, divide each axis in d = 100 equal intervals. This
gives k = 1003 = 1 million boxes.

Generate n = 10000 vectors in 25 dimensions: (U, ..., Uas).
For each, note the box where (Up, Uzg, U24) falls.
Here, A = 50.

Results: C = 2070, 2137, 2100, 2104, 2127, ...

59

SWB in Mathematica

For the unit cube [0,1)3, divide each axis in d = 100 equal intervals. This
gives k = 1003 = 1 million boxes.

Generate n = 10000 vectors in 25 dimensions: (U, ..., Uas).
For each, note the box where (Up, Uzg, U24) falls.
Here, A = 50.

Results: C = 2070, 2137, 2100, 2104, 2127, ...

With MRG32k3a: C =41, 66, 53, 50, 54, ...

Other examples of tests

Nearest pairs of points in [0, 1)°.

Sorting card decks (poker, etc.).

Rank of random binary matrix.

Linear complexity of binary sequence.

Measures of entropy.

Complexity measures based on data compression.

Etc.

60

The TestUO1 software

[L'Ecuyer et Simard, ACM Trans. on Math. Software, 2007].

> Large variety of statistical tests.
For both algorithmic and physical RNGs.
Widely used. On my web page.

» Some predefined batteries of tests:
SmallCrush: quick check, 15 seconds;
Crush: 96 test statistics, 1 hour;
BigCrush: 144 test statistics, 6 hours;
Rabbit: for bit strings.

» Many widely-used generators fail these batteries unequivocally.

61

Results of test batteries applied to some well-known RNGs

p = period length;

t-32 and t-64 gives the CPU time to generate 108 random numbers.

62

Number of failed tests (p-value < 1071% or > 1 — 10710) in each battery.
Generator logs p|t-32|t-64|S-Crush|Crush|B-Crush
LCG in Microsoft VisualBasic 24| 3.9|0.66| 14 — —
LCG(232, 69069, 1), 32| 3.2|0.67| 11 106 —
LCG(232, 1099087573, 0) 30| 3.2/0.66| 13 110 —
LCG(2%, 25214903917, 11), Unix 48| 4.1/0.65 4 21 —
Java.util.Random 47| 6.3]0.76 1 9 21
LCG(28, 44485709377909, 0), 46| 4.1/0.65| 5 24 —
LCG(2%, 1313, 0), 57| 4.2/0.76| 1 10 17
LCG(23!-1, 16807, 0), Wide use 31| 3.8/ 36/ 3 42 —
LCG(231-1, 397204094, 0), 31|19.0| 4.0| 2 38 —
LCG(23!-1, 950706376, 0), 31/20.0 4.0 2 42 —
LCG(102-11, ..., 0), Maple 39.9/87.0/25.0) 1 |22 | 34

Generator logy p|t-32|t-64|S-Crush |Crush |B-Crush
Wichmann-Hill, MS-Excel 42.7(10.0{11.2] 1 12 22
ComblLec88, boost 61| 7.0| 1.2 1
Knuth(38) 56| 79| 7.4 1 2
ran2, in Numerical Recipes 61| 7.5| 2.5

CombMRG96 185| 9.4| 2.0

MRG31k3p 185| 7.3| 2.0

MRG32k3a SSJ + others 191{10.0| 2.1

MRG63k3a 377 —| 4.3

LFib(231, 55, 24, +), 85| 3.8| 1.1| 2 9 | 14
LFib(23!, 55, 24, —), 85| 3.9 15| 2 11 19
ran3, in Numerical Recipes 2.2 0.9 11 17
LFib(2*¢, 607, 273, +), boost | 638| 2.4| 1.4 2 2
Unix-random-32 37| 47| 1.6/ 5 101 —
Unix-random-64 45| 47| 15| 4 57 —
Unix-random-128 61| 47| 1.5 2 13 19

63

Generator logs p |t-32[t-64|S-Crush|Crush |B-Crush
Knuth-ran_array2 129| 5.0| 2.6 3 4
Knuth-ranf_array?2 129/11.0| 45

SWB(224, 10, 24) 567| 9.4| 3.4| 2 30 | 46
SWB(2%2 — 5, 22, 43) | 1376/ 3.9| 1.5 8 17
Mathematica-SWB 1479 —| —| 1 15 —
GFSR(250, 103) 250] 3.6/ 09| 1 8 14
TT800 800| 4.0| 1.1 12 14
MT19937, widely used|19937| 4.3| 1.6 2 2
WELL19937a 19937| 4.3| 1.3 2 2
LFSR113 113| 4.0 1.0 6 6
LFSR258 258| 6.0] 1.2 6 6
Marsaglia-xorshift 321 3.2/ 0.7 5 59 | —

64

Generator logs p|t-32|t-64 |S-Crush |Crush |B-Crush
Matlab-rand, 1492127.0| 8.4 5 8
Matlab in randn (normal)| 64| 3.7| 0.8 3 5
SuperDuper-73, in S-Plus 62| 3.3| 0.8|1 25 —
R-MultiCarry, 60| 3.9| 0.8]2 40 | —
KISS93 95| 3.8/ 0.9 1 1
KISS99 123| 40| 1.1

AES (OFB) 10.8| 5.8

AES (CTR) 130|10.3| 5.4

AES (KTR) 130/10.2| 5.2

SHA-1 (OFB) 65.922.4

SHA-1 (CTR) 442(30.9/10.0

65

66

Conclusion

v

A flurry of computer applications require RNGs.

A poor generator can severely bias simulation results, or permit one
to cheat in computer lotteries or games, or cause important security
flaws.

Don't trust blindly the RNGs of commercial or other widely-used
software, especially if they hide the algorithm (proprietary software...).
Some software products have good RNGs; check what it is.

RNGs with multiple streams are available from my web page in Java,
C, and C++. Also OpenCL library, mostly for GPUs.

Examples of recent proposals or work in progress:

Fast nonlinear RNGs with provably good uniformity;

RNGs based on multiplicative recurrences;

Counter-based RNGs. RNGs with multiple streams for GPUs.

