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A world-class university

• Founded in 1666

• 8 faculties

• 47 000 students 

• Almost 3 000 research students

• 6 800 employees

• Around 650 professors

• 800 senior lecturers

• 1 200 lecturers and other 
research staff

• Turnover EUR 760 million – 1/3 
education, 2/3 research
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Department of EIT

• Research labs at EIT

– Broadband 
Communication

– Electronics

– Communication

– Network and Security

– Signal Processing

– Electromagnetic theory

• Information Theory

• Radio Systems

• Telecommunication Theory

• Radio Systems

– Channel measurements and modeling

– Algorithm development for digital transmitter/receiver
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Current road traffic related problems

Problems:

• According to world health organization report in 2004,
1.2 million people die in road accidents per year.

• 50% of these are vulnerable road users,
• 23% motorcyclists,
• 22% pedestrains,
• 4% cyclists.

• By 2020, road crashes will be third leading cause of 
disability/death worldwide.

• The ever increasing number of vehicles demands 
efficient use of available roads.

Fact:

Land transportation systems have become crucial components 
of modern world.
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Main communication paradigms,
• Vehicle-to-Ifrastructure (V2I)
• Vehicle-to-Vehicle (V2V)
Benefits,
• Road traffic safety
• Road traffic efficiency

Intelligent Transportation Systems
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In short...

It is the channel that determines the ultimate performance limits 
of any communication system.

Vehicle-to-vehicle communications

• Vehicle-to-vehicle (V2V) communication at 5.9 GHz 
frequency will mainly be used for safety related applications.

• The reliability of safety applications highly depends on the 
latency and the quality of the communication link.

• The quality of the communication link relies on the 
properties of the propagation channel.
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What is Channel?

Transmit

antenna

Receiver

anetnna

Propagation

channel Radio
channel

• Usually channel model is made of three constituents

− Path-loss determines the average (over local space and 
time) power received for a given TX-RX range

− Shadowing is added to the path-loss to account for local 
large-scale effects (Obstruction, static multi-paths, etc.)

− Fading represents the short-term variations of the received 
power and is caused by multipath propagation
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Free-space loss

d

ARX

If we assume RX antenna to be isotropic:
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Free-space loss

Friis’ law

Received power, with antenna gains GTX and GRX:
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Valid in the far field only

In free space, the received power decays with 
distance at a rate = 20 dB/decade
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Free-space loss

What is far field?

The free-space loss calculations are only
valid in the far field of the antennas.

Far-field conditions are assumed ”far

beyond” the Rayleigh distance (also known
as Fraunhofer distance):

λ

2
2 a

R

L
d =

where La is the largest dimesion of
the antenna.

-dipole2/λ

2/λ

2/λ=aL

2/λ=Rd

Parabolic

rLa 2=

λ

28r
dR =

r2

Another rule of thumb is:
”At least 10 wavelengths”
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The reference distance d0

• For path-loss propagation models, a close-in distance d0 is 
selected such that it lies in the far-field region.

• For practical systems in the 1-2 GHz region, d0 is typically chosen 
to be 1 m in indoor environments, and 100 m or 1 km for outdoor 
environments.

• For distances d>dbreak , the above equation doesn’t hold anymore.

��� � ��� � 10
��

������

�.����
� 20log	�

�

��
� d� ��



2014-06-21

8

Measurement-based Channel Characterization and Modelling of Vehicle-to-Vehicle Communications

Taimoor.abbas@eit.lth.se 15/69

Propagation mechanisms

iΘ
rΘ

t
Θ

1ε
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Reflection and transmission
Diffraction

Scattering Waveguiding
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The WSSUS model

Assumptions

A very common wide-band channel model is the WSSUS-model. 
Roughly speaking it means that the statistical properties remain 

the same over the considered time (or area)

Recalling that the channel is composed of a number of different
contributions (incoming waves), the following is assumed:

The channel is Wide-Sense Stationary (WSS), meaning
that the time correlation of the channel is invariant over time.

The channel is built up by Uncorrelated Scatterers (US), meaning
that contributions with different delays are uncorrelated.
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What is large scale and small scale?
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Large-scale fading

Basic principle

d

Received power

Position

A B C C

A
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Small-scale fading, two waves: 

location-dependent, time-varying fading

• If no movement is involved, Rx sees different signal strength (location-

dependent fading)
• If Rx moves, Rx experiences time-varying fading (small-scale fading, short-

term fading)
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Radio channel research

Main objective is to understand the underlying mechanisms behind 
the propagation of a signal from transmitter to receiver in order to 
construct a mathematical model for controlled synthesis of channels

• Static Model

– Spectral-based, e.g., beamforming

– Stochastic maximum likelihood

– Deterministic maximum likelihood

• Dynamic Model

– Kalman filters, e.g., EKF, UKF

– Sequential Monte Carlo, e.g., Particle filter

• Measurement based

– SAGE, RIMAX

• 3D ray-optical based

– Ray tracing
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Cellular Channels vs. V2V Channels
Base station

• Elevated position
• Fewer scatters
• Static

Mobile station

• Close to ground
• Many scatterers in the surrounding
• Static or Dynamic

Vehicle-to-vehicle 

• Both antennas are close to ground
• Many scatterers in the surrounding (moving/static)
• Highly dynamic
• Typically higher frequency compared to cellular 

systems.

The catch: 
V2V channels are fundamentally different from cellular channels and are 
subject to faster fluctuations.
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Channel measurements

• Principle of channel measurements

− Transmit a known signal �� �
− Estimate the channel	!  , # 	from the received signal $� �

Commonly used channel measurement tools:

• Vector network analyzer

• Channel sounder
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Channel Sounder

• Separate TX and RX unlike VNA
• Needs a joint clock (Rubidium or GPS)
• Phase and frequency synchronization
• End-to-end calibration
• Calibrated antenna elements for directional estimation

Channel Measurements and Modelling for Vehicle-to-Vehicle Communications 

Taimoor.abbas@eit.lth.se 10/42
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Measurement based channel modelling

1

2 3

4
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• Obtain a general understanding of vehicle-to-vehicle 
propagation channels
− Underlying mechanisms
− System impact
− Gain from multiple-antenna systems
− Antenna/channel interaction

• Build simulations models for system evaluation
− Vehicle-to-vehicle propagation channels are different 

from many other propagation channels

V2V channel measurements objectives

Next step: 
Preparation for measurements
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Antenna 
calibration

Measurement campaign step by step

Channel 
sounder 

mounting

Conduction  
measure-

ments
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Antenna 
calibration

Measurement campaign step by step

Channel 
sounder 

mounting

Conduction  
measure-

ments

Measurement-based Channel Characterization and Modelling of Vehicle-to-Vehicle Communications

Taimoor.abbas@eit.lth.se 30/69

Antenna 
calibration

Measurement campaign step by step

Channel 
sounder 

mounting

Conduction  
measure-

ments



2014-06-21

16

Measurement-based Channel Characterization and Modelling of Vehicle-to-Vehicle Communications

Taimoor.abbas@eit.lth.se 31/69

Antenna 
calibration

Measurement campaign step by step

Channel 
sounder 

mounting

Conduction  
measure-

ments
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• TX/RX mounted on small 
trucks

• 4x4 MIMO measurement 
campaign at 5.2 GHz

• Measurements with cars in 
same and opposite lanes

Initial Lund’07 V2V channel measurements 

Antenna 
elements

Non-omni-
directional 
antenna 
patterns
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Measured Traffic Scenarios

Highway Measurements:

• Two lane (each direction) highway

• Direction of travel was separated 
by 0.5m high wall

• TX/RX speed (80-90km/h)

• Many moving vehicles 

• LOS and OLOS conditions

• Only convoy measurements
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Measured Traffic Scenarios

Urban Measurements Lund:

• Width 9-14 m

• Single lane

• Parked cars along street

• Some traffic

Urban Measurements Malmö:

• Width 14-40 m

• Two lanes and turn lanes

• Parked Cars along street

• Busy traffic
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Measured Traffic Scenarios

Rural Measurements:

• Single lane country road

• TX/RX speed (60-70km/h)

• No moving vehicles 

• Always LOS conditions

• Measurements while driving in 
Convoy and in Opposite direction

Rural measurements can be treated 

as reference; where no or very few 

scatterers are around.

Channel Measurements and Modelling for Vehicle-to-Vehicle Communications 

Taimoor.abbas@eit.lth.se 18/42
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We found that:

• Vehicle-to-vehicle propagation channels are fundamentally different from 
cellular propagation channels

• Vehicle-to-vehicle propagation channels are non-stationary

• A geometric-stochastic propagation channel model is suitable

…but also concluded that:

• Measurements with trucks are practical, but will influence the measured 
channel (antenna height)

• Measurement conduct (cars in convoy or opposite directions on highways 
etc.) is commonly used, but not representative for many vehicle-to-vehicle 
applications (e.g., intersection collision avoidance)

Conclusions from Initial ’07 Masurements
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DRIVEWAY’09 measurements partners
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DRIVEWAY’09 measurements preparation

• Preparation time: 7 months
• Time for channel measurements: 5 days
• Time for antenna calibration: 8 days
• Total milage: 3800km
• Channel sounder IR: 120 GB
• Audio/Video documentation: 14GB
• Antenna calibration: 7GB
• .xls notes: 600kB
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Vehicle-to-vehicle 
measurements:

• Regular cars:

standard hatchback style

• Realistic antenna design:

4-element linear array of 
patch antennas integrated in 
rooftop radome

• Realistic antenna placement
Consequences:
• Shadowing by car roof 

inclination
• Shared space with other 

antennas (e.g., GPS)

DRIVEWAY’09 measurements
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Identified scenarios where V2V comunications will be 
(particularly) useful, e.g.,

– collision avoidance,

– emergency vehicle warning,

– hazardous location notification,

– wrong-way driving warning,

– co-operative merging assistance,

– slow vehicle warning,

– lane change assistance 

Application specific measured scenarios
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Time-delay characteristics:
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signs etc.

• Rapidly varying channel

• Discrete components carry significant energy and change delay bin with 
time

• Diffuse components following LOS

General Observations – Time/Delay
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Non line-of-sight (NLOS)

V2V communication link categorization

Line-of-sight (LOS)

Obstructed line-of-sight (OLOS)

• Safety critical situations
• Poor signal reception
• Significant losses at 5.9 GHz
• Lacking research
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Non Line-of-sight (NLOS) signal reception

TX

RX

Blocked
LOS

• NLOS signal reception is enabled due 
to scattering of radio waves, e.g., 

• single or multiple bouce
reflections, 

• diffraction.

• Factors that influence the NLOS-
reception are:

• Objects such as buildings, road-
signs, light poles, parked and 
moving vehicles

• Structure and material properties
or these objects

• Street width, distance of TX/RX 
vehicles from the intersection
center

Reflection

Diffraction
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Directional analysis
A high-resolution algorithm (SAGE) is used for 
a refined identification of interacting objects in,
• LOS situations
• OLOS situations
• NLOS situations

Power contributions

Identified propagation mechanisms at 6s

The results show that:
1. Single and double bounce reflection processes are 

dominating in the absence of LOS
2. Reflections from other vehicles are not “seen” as 

major contributors to the received signal power.  
3. Large directional spread motivates use of multiple 

antennas to exploit diversity
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Merging lanes vs. urban intersections

Received power is negligible in 

NLOS. Scatterers contributes only 

when there is LOS.

TX
RX

Merging lane scenario
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Merging lanes vs. urban intersections

TX

RX

� � � � � �� �
Relatively better NLOS reception than 

merging lane scenario due to 

multiple scatterers (mainly buildings 

at the corners) . 

Urban intersection scenario

• Both scenarios are safety critical with NLOS 
propagation conditions.

• The merging lanes scenario has worse 
propagation conditions than the urban 
intersections due to open surroundings.
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Merging lanes vs. urban intersections
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• Received power drops up to 20 dB depending 

upon the DOA and the differences in antenna 

gain of the RX elements.

• This motivates to use TX/RX antennas that

has omni-directional pattern otherwise

multiple antennas should be used.

Snapshot at 10.58 s

Snapshot at 17.56 s

Estimation of direction-of-arrival and departure
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• Deterministic approach, can be very realistic

• Solve approximation to Maxwell’s equation, using high-
frequency approximation

[Maurer et al. 2004]

Ray tracing
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• 3D virtual scenario is created which includes buildings, traffic signs, lamp posts as well
as parked cars along roadside. 

• Only the direct path, specular reflections (1st and 2nd order) and non-specular reflections 
(1st order) are considered to characterize the channel.

• Measured polarimetric antenna patterns are used.

• GPS coordinates of TX/RX, logged during measurement, are used for simulation.

Goal: Comparison of ray-tracing channel simulator and channel measurements

Validation of ray-tracing based model
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Validation of ray-tracing based model
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• Very good agreement in LOS and near LOS 
regions.

• In NLOS, the ray tracing model 
underestimates the channel gain.

• Gap can be reduced by increasing the order of 
reflection.

• Contribution of third and higher-order specular 
and non-specular reflections is missing in the 
simulator.
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Validation of ray-tracing based model
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[1] T. Mangel, O. Klemp, and H. Hartenstein, “5.9 GHz inter-vehicle 
communication at intersections: a validated non-line-of- sight path-loss 
and fading model,” EURASIP Journal on Wireless Communications and 
Networking, vol. 2011, no. 1, p. 182, 2011.

• Mangel et. al. in [1] has presented a 
NLOS path-loss model at 5.9 GHz 
named VirtualSource11p.

• The model is based on an extensive 
measurement campaign conducted 
in Munich, Germany.

• The NLOS path-loss model is 
claimed to be flexible and 
incorporated specific geometry 
aspects.

• Question: Is the model valid only in 
the intersections where the 
measurements were taken?

Validate the model 
with independent 
data?

Validation of NLOS path loss model

Reference non-line-of-sight path loss model
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Validation of NLOS path loss model
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The results in this study suggest to introduce an intersection dependent gain 
parameter in the reference NLOS model to cope with varying scattering. But 
otherwise the proposed model seems to be accurate.

Validation of NLOS path loss model
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Scenario n PL0 σ

Urban 
Convoy

LOS 1.81 2.85 63.9 4.15

OLOS 1.93 2.74 72.3 6.67

Measured channel gain for urban scenario

10 dB

10 dB extra attenuation translates to a 3 time reduction of communication range, e.g. 100 m 
instead of 300 m.
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Network simulations

Simulation scenario,

• 10 km long highway

• 4 lanes (2 on each side)

• 400 byte long CAM messages

• Channel access procedure is carrier 
sense multiple access (CSMA)

• Vehicle speeds independent Gaussian 
distributed with mean (23, 30) m/s per 
lane and standard deviation 1 m/s

• Vehicles Poisson distributed with inter-
arrival rate of 1 s, 2 s, 3 s.

• Channel models comparison,

– Nakagami dual slope 

– LOS/OLOS dual slope model
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• Reflects key properties:

– Scattering occurs 
around TX and RX

– Both TX and RX are 
moving

• Closed-form equations for 
Doppler spectra

[Patel et al. 2005]
58 / 30

Two-ring model



2014-06-21

30

Measurement-based Channel Characterization and Modelling of Vehicle-to-Vehicle Communications

Taimoor.abbas@eit.lth.se 59/69

• Segmented time-invariant 

tapped delay line

• Time-varying tapped delay line
[Acosta and Ingram 2007]

[Matolak 2008]

Tap-delay line model
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Distributed antenna measurements

• Measurements in the past have been 
conducted with same type of antenna 
arrangements

– Usually roof mounted antenna 

– Single exception exists with antenna 
placed Inside-windscreen

• Position of antenna is expected to have large impact 

– Both TX and RX antennas are at same height

– Relatively close to ground level (1-2m above ground)

– Shadowing effects are expected 
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1

3

2

4

Roof AntennaBumper AntennaInside Windscreen AntennaLeft-side Mirror AntennaAntenna Placement

Antennas used are omni-directional

TXRX

DIVERSITY’11 measurement setup
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Leftside-mirror antenna 

location has strongest channel 

gain

Roof antenna location has 

strongest channel gain 

• Leftside-mirror antenna is sensitive to the alignment of cars

Impact of antenna placement
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Bumper antenna location has 

strongest channel gain before cars 

cross each other

Roof antenna location has 

strongest channel gain after cars 

cross each other

Impact of antenna placement

Diversity arrangements with complementary antennas seems to be the 
preferred solution, e.g., roof or left-side-mirror together with the bumper 
antenna.
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• V2V channels differ significantly from standard cellular channels

– do not expect satisfactory performance for standard WLAN 
equipment

• For network simulations – include shadowing effects

– buildings, vehicles, 

– long correlation time for shadowing from other vehicles

• For link simulations – include non-stationarities and consider the double 
selective channel

– high Doppler spread – short correlation time

– high excess delay – small coherence bandwidth

• Multiple antenna arrangements might be required to get reliable links

– Rx diversity

• Many challenges and opportunities still remain

Conclusions

Measurement-based Channel Characterization and Modelling of Vehicle-to-Vehicle Communications

Taimoor.abbas@eit.lth.se 68/69

Thank you!
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