All Sensors: The Networks of the Future?

Moderator

Reinhardt Karnapke, BTU Cottbus, Germany

Panelists

<u>Arndt Steinke</u>, CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Germany <u>Manuela Vieira</u>, CTS-ISEL, Portugal <u>Tapio Saarelainen</u>, National Defence University, Finland <u>Sergey Yurish</u>, Excelera, S. L., Spain Vítor Carvalho, Minho University, Portugal

All Sensors: The Networks of the Future?

- The Future
 - Impossible to know, hard to predict
 - Moore's Law holds
- All Sensors
 - Getting smaller
 - Integrated in cars, houses, phones ...
- Networks
 - Developing communication protocols challenging
 - Hirarchical networks, IoT

Panel on SENSORCOMM/SENSORDEVICES TOPIC: All Sensors

<u>Sensor Platforms – The solution for fast market entrance of Research Results</u>

Arndt Steinke

Lisbon, Portugal, November 2014

The expections of SME`s for smart sensor systems

2

- CiS practical experiences -

step-by-step (innovation)
shorter cycles ("1,5" years)

Sensordevices 2014, Panel Lisbon, Portugal, November, 2014

Lisbon, Portugal, November, 2014

www.cismst.de

The results presented underline the strategy that an open (technological,commercial and international) platform has a high leverage for SMEs`strength

>With an open technology platform consisting of basic technology and building blocks the consideration of M-M and M-t-M technologies is possible and necessary

Let`s talk about it!

Sensordevices 2014, Panel Lisbon, Portugal, November, 2014

Thank you very much for your attention

asteinke@cismst.de

www.cismst.de

Visible Light Communication

Wireless Communication Using Light

TCO Glass

5

- Light-to-dark sensitivity depends on the <u>carbon</u> <u>concentration</u>
- Color recognition depends on the <u>applied bias</u>
- Light filtering depends on the bias wavelength and side
- WDM device
 <u>RGB</u> channels;

Introduction

- Visible Light Communication is **a data communication medium** using visible light;
- Lighting is a **major source** of electric energy;
- General Characteristics:
 - Visibility Security Harmless for human body Unregulated Used in restricted areas

Motivation

- WLED devices could be used for wireless purposes.
- LEDS are cheaper than Radio Frequency.
- Optical wireless allows easy bandwidth reuse and improve security.
- It does not generate RF contamination.
- RF radiation in hospital and airplanes will be vanished
- Large amount of energy can be saved.

Transmitter / Receiver of VLC

Visible light LEDFluorescent lamps

- Single or double p-i-n photodetectors
- Image sensors

Advantages/Disadvantages

- Transmit data by sockets of existing high equipment.
- Less problems associated with RF communication systems.
- Consume less energy
- Security.
- Harmless for human body.

- Atmospheric absorption.
- Shadowing.
- Beam dispersion.
- Interferences from background light sources.

Applications

• Under water communication systems.

Flow planning survey systems for a store.
Inside airplane communications.

- Vehicle to vehicle messaging.
- Indoor broadcasting system.

Networks in the Battlespace

Panel presentation, SENSORCOMM/ IARIA, 20.11.2014

Major Tapio Saarelainen, PhD, IARIA FELLOW

1. Every Soldier is a Sensor

An example of current Future Force Warrior System

Gathering big data from:

1.Soldier him/herself via biometric sensors, internal (heart-rate, activity, performance, level of sleep, level of nutrition)

2.Soldier him/herself via embedded sensors in Battle Dress Uniform (levels and types of radiation, sensing temperature, pace of a soldier, direction, location)

3.Connecting soldiers to ubiquitous network systems (automatic/remote/manually) \rightarrow data for higher echelons

GOAL:

- 1. Capability to command and to be commanded
- 2. Instant relevant data in two ways -> operational efficiency and safety
- 3. Sustainability in operations and possibility to achieve set objective

GOALS for the networks:

- 1. Ubiquitous networks for constant communication and decision making process → computers, communication, command, control, information, intelligence, surveillance and reconnaissance (C4I2SR)
- 2. Forwarding data of Situational Awareness (SA) and Common Operational Picture (COP) \rightarrow data for decision making!
- 3. Connecting soldiers to ubiquitous network systems → execution of operations
- 4. Providing more data and services for the soldiers \rightarrow survivability
- 5. Connecting tactical level of operations to the higher echelon \rightarrow optimizing the performance, minimazing fratricide

3. Situational Awareness for decision making process

FOCUS: Capability to make reliable and timely accurate decisions

4. Common Operation Picture – Radio Based Combat Identification (RBCI)

- Capability to identify Friend or Foe
- Capability to shoot and not to get shot

Receive Channel

RF Interface

Altera FPG/

5. Connecting soldiers to ubiquitous network systems - War as a Data Exchange Process

PUOLUSTUSVOIMAT | FÖRSVARSMÄKTEN | THE FINNISH DEFENCE FORCES

6. Providing more data... - Levels of Tactical Communication

DRAFT

Draft Version 4

BQ 11 DAFires/DACAS/FoD Operational View (OV-1)

FÖRSVARSMAKTEN

PUOLUSTUSVOIMAT

30. joulukuuta 2014 **6**

7. Connecting tactical level of operations to the higher echelon - Products of Netted Battlespace

Tactical Communication requirements f operating in Battlespace

- Situational Awareness (SA)
- Common Operational Picture (COP)
- Command and Control systems (C2)
- Identification Friend or Foe (IFF) or Blue Force Tracking (BFT)

- Capability to co-operate with UAVs and UGVs and robots
- Data from sensor to shooter
- Voice
- Navigation
- Situational Awareness
- Messaging
- Imaging
- Video
- Security

30. joulukuuta 2014 7

BEDRIDDEN PEOPLE CLOTHES FOR HEALTHCARE

Vítor Carvalho (IPCA & Algoritmi-UM) - Portugal

SENSORDEVICES 2014

The Problem?

- Demographic changes!
 - World population is getting older
 - People try to stay maximum of their life at their houses
 - Improve their comfort
 - Better quality of life
 - Requires available conditions for an efficient medical monitoring and treatment
 - Commercial systems are expensive and not affordable to most of population

Population Aged or Over 60 Evolution

Sensors & Daily Life Integration

Sensors Are Everywhere Home Health Care Industrial Mobile Devices Analog MCU rontEnd Building Infrastructure Smart Analog Enabling Smarter Sensors

source: http://www.renesas.eu/products/promotion/smart_analog/index.jsp

Sensors in Smartphones

source: http://2014.okfestival.org

Sensors in Smart Watches

LG Watch R

Sensors:

- Gyro
- Accelerometer
- Compass
- Heart rate monitor
- Barometer

GUDACION Mear

Sensors in Wrist-Bands

Microsoft Band

Sensors:

- Optical heart rate sensor
- 3-axis accelerometer/gyro
- Gyrometer
- GPS
- Ambient light sensor
- Skin temperature sensor
- UV sensor
- Capacitive sensor
- Galvanic skin response
- Microphone

Sensors in Clothes

source: "A Single-chip Encrypted Wireless 12-Lead ECG Smart Shirt for Continuous Health Monitoring," T. Morrison et al., University of Washington

Prototype of MC10's BioStamp Senses Temperature, Heart Rate, and Other Vital Signs

source: http://www.pbs.org/wgbh/nova/next/tech/week-review-draft/

Bedridden People – Challenge?

- 10
- Why not integrate all these already available technologies and build low cost and confortable biomedical monitoring systems in clothes or other non invasive tools?

Potential Advantages?

- early diagnosis
- efficient and fast treatment
- improve comfort (patients can stay more time at their houses)
- reduce public health costs,...

Bedridden People Clothes for Healthcare

Thank you!

vcarvalho@ipca.pt

IoT: do we need a novel smart sensors and networks ?

Dr. Sergey Y. Yurish, R&D Director Excelera, S.L., Barcelona, Spain

Panel Discussion, November 20, 2014, Lisbon, Portugal

Status and Challenges

- By 2020, sensors will link millions of objects through the Internet of Things (IoT): 212 billion (*IDC*)
- Internet of Things market is on track to hit
 \$7.1 trillion in 2020 (*IT research agency, IDC*)
- The rapid rise of connected devices in the loT landscape has raised security problems, big data storage, etc.

IoT Development

THE INTERNET OF THINGS LANDSCAPE

SOURCE GOLDMAN SACHS GLOBAL INVESTMENT RESEARCH

HBR.ORG

- The Internet of things: networked objects and smart devices
- IoT as a consumer driven, smart wireless device is the initial steps into a next generation of component and device cycles

Roadmap

TECHNOLOGY ROADMAP: THE INTERNET OF THINGS

International Frequency Sensor Association • www.sensorsportal.com

New Challenges to be Faced

- Market players will need innovative electronics components as well as specific know-how related to IoT
- IoT needs an intelligent interconnection of everyday objects
- IoT: smart, intelligent objects + intelligent, remote communication
- Systems are becoming intelligent
- Others ?

