
PANEL MMEDIA
Challenges in Multimedia

WWW.IARIA.ORG

1

Petre DINI

Challenges in Multimedia

Prof. Dr. Petre DINI
Concordia University, Canada

China Space Agency Center, China

IARIA Organization

petre@iaria.org

Panel

• Moderator
Petre Dini, Concordia University, Canada || China
Space Agency Center, China

• Panelists
Jong Pil Park, Samsung Electronics, South Korea

222Petre DINI

Jong Pil Park, Samsung Electronics, South Korea
Jaeseon Song, Chungbuk National University,
South Korea
Petre Dini, Concordia University, Canada || China
Space Agency Center, China

Topics

• Jong Pil Park, Samsung Electronics, South Korea

> Realistic rendering and real-time rendering in embedded hardware

• Jaeseon Song, Chungbuk National University,
South Korea

333Petre DINI

South Korea

> Effect of depth information on illusion in daily life

• Petre Dini, Concordia University, Canada || China
Space Agency Center, China
> Big Data, Small Data, Linked Data for information retrieval

Big Data, Small Data, Linked Data

 Challenges

Complexity

Distribution

Ownership

Big vs. Small Data

444Petre DINI

 Current approaches

- Ontology

- Semantic models

- Social networks

- Collaborative research

Selective Ray Tracing Framework
for Real-time Global Illumination

on Mobile Platformon Mobile Platform

Jong Pil Park, Jung Bum Kim, Sang Jun Ahn

Samsung Electronics

1. Motivation

Global Illumination is expensive
- Global Illumination Methods (Ray Tracing, Radiosity, Light Transport)

. Computational cost : (Ray Number x Object Number2 x Light Number)

- Offline Rendering / Pseudo Realistic Method in PC GPU

Ray Tracing HW is expensive
- Dedicated HW for Ray tracing can accelerate the Global Illumination

. Minimized size of HW is essential

Ray Tracing embedded HW very expensive
- Additional constraints in memory bandwidth, gate count and GPU performance

 Minimize Ray Tracing Region

2. Restriction

HW Ray Tracing Pipeline is Fixed
- Ray Tile Structure

- Fixed Pipeline

Use Conventional GPU in Embedded Environment
- Cannot use GPGPU Tech.

- Conventional GPU Operation can be used only.

2. Restriction & Opportunity

HW Ray Tracing Pipeline is Fixed
Using Tile Structure

Use Conventional GPU in Embedded Environment
 Parallel Processing of GPU and RT HW

3D Scene
Loading

A) Ray Tracing Map :
Reflective/Refractive
Surface detection

B) Ray Tracing Map :

3. Selective Ray Tracing Framework
Algorithm

A. Ray Tracing Map generation :
find the region of to be rendered by reflective/
refractive surface and set the region to be ray traced

B. Ray Tracing Map generation :
find the shadow boundary region and set the region
to be ray traced

C. Rendering of rasterization / ray tracing due to
calculated ray selection map

a. Rasterization rendering use GPU operationB) Ray Tracing Map :
Shadow Boundary

C) Rasterization
Rendering

D) Rendered Image
Composition

C) Ray Tracing
Rendering

a. Rasterization rendering use GPU operation

b. Ray tracing rendering use dedicated HW rendering

D. Rendered image composition using framebuffer

Benefit
- Reduction of ray tracing region

- Performance enhancement for the parallel
Processing

Fig.1 Selective ray tracing framework

• Goal

4. Boundary Test with Early Termination

Fig.2 Algorithm diagram of shadow boundary detection

• Goal
- Detect the shadow boundary region to be ray traced

• Algorithm
1. Boundary test of the tile at corner point(same as Sen’s approach[1])

2. If we found current tile is tested as boundary, then terminate (c, d)

3. In other case, split the current tile into 4 subtile

4. Boundary test for the subtiles

a. If current tile is lighted (a) and if any subtile is shadowed, then terminate (e,f)

b. If current tile is shadowed(b) and if any subtile is lighted, then terminate (g,h)

5. If not terminated, iteratively repeat 3, 4 until all the pixel is tested

6. If all not terminated until 5, current pixel is regarded as “Not Boundary” region

6[1] P. Sen, M. Cammarano, and P. Hanrahan, “Shadow silhouette maps,” in ACM Transactions on Graphics (TOG), vol. 22, no.
3. ACM, 2003, pp. 521–526.

• Benefit

4. Boundary Test with Early Termination

Fig.2 Algorithm diagram of shadow boundary detection

• Benefit
- Performance :

[Brute force Test]

Cost = 8 * n2 * k1
[Our Approach]

- Min.

Cost = (n/m+1)2 * k2
- Max.

Cost = (n+1)2 * k2

- Structure

. Tile based Rendering

. Early Terminate

7[1] P. Sen, M. Cammarano, and P. Hanrahan, “Shadow silhouette maps,” in ACM Transactions on Graphics (TOG), vol. 22, no.
3. ACM, 2003, pp. 521–526.

n : total Pixel number

m : tile pixel length

k1 : computational cost for adjacent pixel test

k2 : computational cost for shadow test of a single pixel

5. Selective Ray Tracing Results

a) Global Illumination b) Selective Ray Tracing c) The region which is ray traced in the
selective ray tracingselective ray tracing

a) Global Illumination b) Selective Ray Tracing c) The region which is ray traced in the
selective ray tracing

Fig.3 Selective ray tracing rendering result on “Almost Sphere” scene

Fig.3 Selective ray tracing rendering result on “Chess” scene

5. Selective Ray Tracing Results

a) Global Illumination b) Selective Ray Tracing c) The region which is ray traced in the
selective ray tracing

Fig.3 Selective ray tracing rendering result on “Wedding Ring” scene

6. Selective Ray Tracing Statistics

Table 1. The number of rays in global illumination and hybrid rendering on the test scenes

Almost Sphere Amplifier Chemical Lab. Chess Fiat Stained Glass Wedding Ring

Number of primitives 53762 314582 98024 105766 52982 491961 115476

Number of rays in full ray tracing (A) 1442367 10317256 3369251 1306236 2876165 6057722 1594023

Number of rays in selective ray Tracing (B) 766527 8726526 2645273 466414 2003045 4473405 321115

Ratio B/A 0.531436867 0.845818501 0.785121975 0.357067176 0.696429099 0.738463238 0.201449414

Almost Sphere Amplifier Chemical Lab. Chess

Fiat Stained Glass Wedding Ring

7. Hardware Implementation

• Hardware Implementation :
– Hardware ray tracer framework with FPGA board. Dedicated HW and GPU is used

– The platform renders same image as in PC simulator and it could extended to global illumination rendering
in mobile platform.

8. Conclusion
• Efficient Ray Tracing Framework :

– We develop efficient selective ray tracing framework for real-time global illumination. Our hybrid framework
is tested in software framework and hardware platform both.

• Global Illumination Rendering :
– The selective ray tracing rendering of this work produces same image as full ray tracing using rasterization
and ray tracing.

– The selective ray generation of shadow processing removes aliasing artifact of rasterized shadow. We devise
new shadow boundary detection algorithm and it help to increase performance of rendering.

8. Future Work
• LoD Concept for Reduction of Rays

– The ray number of distance area is reduced and interpolate the adjacent pixels

• Hardware Implementation on Mobile SoC Chip :
– The FPGA implementation is to be applied to real-time global illumination on mobile environment.

a) Selective Ray Tracing
Ray Number : 27424

a) Selective Ray Tracing w/ LoD
Ray Number : 19710

Effects of added lines and
orientations of image on angle illusion in road scene

Song, Jae Seon Jung, Woo Hyun†
Department of Psychology, Chungbuk National University, Korea

†com4man@gmail.com

Angle illusion in straight road

Introduction

O

9999°°

A B

O

Introduction
Ponzo illusion

Experiment 1

②①

IV: original image(①)
addition of salient lines to original image(②)

DV: perceived size of angle between two converging lines

Experiment 1

30

40

50

o
f
il
lu
si
o
n
(d
e
g
re
e
)

Magnitude of illusion =
actual angle size - perceived angle size

0

10

20

original addition of lines

M
a
g
n
it
u
d
e
o
f
il
lu
si
o
n
(d
e
g
re
e
)

Type of images

Experiment 2

30

40

50

m
a

g
n

it
u

d
e

o
f

il
lu

si
o

n
(d

eg
re

e)

< ≒

0

10

20

Occluded sky scene Not occluded sky scene

m
a

g
n

it
u

d
e

o
f

il
lu

si
o

n
(d

eg
re

e)

Type of images
addition of lines(upright) addition of lines(inverse)

< ≒

