Marko Jäntti

ICONS PANEL

ICONS PANEL

- Topic: Information and Intelligent Systems; Current Trends
- Moderator

Marko Jäntti, University of Eastern Finland, Finland

- Panelists
 - Tamer Nassef, Misr University for Science and Technology, ECTI Co., Egypt
 - Fabrice Mourlin, UPEC University, France
 - Tomasz Hyla, West Pomeranian University of Technology, Poland
 - David Musliner, SIFT, USA

University of Eastern Finland

- Focus areas
 - Forests and the Environment
 - Health and Well-being
 - New Technologies and Materials
- 15,000 students and 2,800 members

Database services Server services **Application services** Data network services Service desk services **Cloud services**

Service Desk

Specialist

2.5.2014 4

Best practices for IT service management

Source: Office of Government Commerce

Process improvement work in practice

EASTERN FINLAND

2.5.2014 **6**

Panel questions

- 1. Are information systems enough for future IT industry? Current trends?
- 2. How to transition from information systems to service systems?
- 3. What makes the IT world more "intelligent"?

Thank you!!! Questions, comments?

Marko Jäntti, PhD. (marko.jantti@uef.fi) School of Computing, Kuopio campus Software Engineering Research Unit KISMET project

www.uef.fi

David Musliner – SIFT

- Global 2011 direct cyber-attack costs plus remediation: >\$350B. 2013 certainly >\$500B.
- Including intellectual property theft: >>\$1T.
 - Described by General Michael Hayden, former head of the NSA, as "largest transfer of wealth in the history of mankind."
- Smart and semi-smart people use weak tools to make vulnerable software.
- Other smart and semi-smart people use powerful tools to find and exploit those software vulnerabilities.

David Musliner – SIFT

- More powerful tools for building invulnerable software.
- Intelligent systems for active cyber defense.
 - Find and fix or shield the vulnerabilities before the badguys.
 - We have *a lot* more computing power than they do.
- SIFT's Fuzzbuster project.
 - In 18 hours on a single processor, found & shielded 12 Linux bugs.
 - Crashed Google's Chromium browser thousands of times.
 - . . .
- DARPA Cyber Grand Challenge.

An Introduction to Medical Informatics Tamer M Nassef

Misr University for Science and Technology ECTI. tamer@ieee.org

Define Medical Informatics

Medical informatics is a **scientific/systematic**

field of study that deals with the acquiring, storage,

retrieval, and processing of medical, biological and associated data, information and knowledge for the purpose of problem solving and decision making

Why Medical Informatics

- Why is proper management of medical data important ?
 - Patient health record
 - Administrative purposes
 - Research and knowledge discovery
 - Legal issues
 - And the list goes

Medical Informatics Solutions

- Databases
- Information Retrieval
- Internet

Computer programs

Medical Informatics Solution

- 3D- Imaging
- Other examples of medical informatics applications

Ultimate goal is to improve the quality of health care, research and education in medicine and health

Personalized Medicine

- Genomic medicine
- Manage greater quantities of data and more complex data over time

The Ninth International Conference on Systems ICONS 2014

Thank You

Information and Intelligent Systems: Current Trends

Fabrice Mourlin

LACL (CNRS EA 4219) UPEC University PRES Paris-Est– France

ICONS 2014

The Ninth International Conference on Systems February 23 - 27, 2014 - Nice, France

fabrice.mourlin@u-pec.fr

- Labs: L.A.C.L. Labs Algorithm Complexity Logics
 - Team: P.C.S. Parallel and Communicating System,
 - Manager: Prof. C. Dima
 - Work group: Mobile Communicating System
 - Members: Fabrice Mourlin
 - Cyril Dumont (PhD Student)
 - Charif Mahmoudi (PhD Student)
 - Brahim Foura (PhD Student)
 - Guy-lahlou Djiken (PhD Student)(co-supervised by Prof. Fotso)
 - Industrial Projects:
 - MobileSim: numeric computing based on mobile agents system with ESI-Group
 - MobilePlanner: distributed planning manager with Agent/QS.

Air Bus A380	
- 1 billion line of code	
 each engine generates 10 TB 	640TB per
every 30 min	Flight
Twitter Concretes approximately 12 TP of	

Twitter Generates approximately 12 TB of data per day

New York Stock Exchange 1TB of data everyday

storage capacity has doubled roughly every three years since the 1980s

Data Quantity

Our Data-driven World

- Science
 - Data bases from astronomy, genomics, environmental data, transportation data, ...
- Humanities and Social Sciences
 - Scanned books, historical documents, social interactions data, new technology like GPS …
- Business & Commerce
 - Corporate sales, stock market transactions, census, airline traffic, ...
- Entertainment
 - Internet images, Hollywood movies, MP3 files, ...
- Medicine
 - MRI & CT scans, patient records, ...

Importance of Big Data

Government

In 2012, the Obama administration announced the Big Data Research and Development Initiative:

84 different big data programs spread across six departments

Private Sector

- Walmart handles more than 1 million customer transactions every hour, which is imported into databases estimated to contain more than
 2.5 petabytes of data
- Facebook handles 40 billion photos from its user base.
- Falcon Credit Card Fraud Detection System protects 2.1 billion active accounts world-wide

Science

- Large Synoptic Survey Telescope will generate 140 Terabyte of data every 5 days.
- Large Hardon Colider 13 Petabyte data produced in 2010
- Medical computation like decoding human Genome
- Social science revolution
- New way of science (Microscope example)

Importance of Big Data

• Job

- The U.S. could face a shortage by 2018 of 140,000 to 190,000 people with "deep analytical talent" and of 1.5 million people capable of analyzing data in ways that enable business decisions. (McKinsey & Co)
- Big Data industry is worth more than \$100 billion

growing at almost 10% a year (roughly twice as fast as the software business)

- Technology Player in this field
 - Oracle
 - Exadata
 - Microsoft
 - HDInsight Server
 - IBM
 - Netezza

Some Challenges in Big Data

Less than 10% of Big Data world are genuinely relational
 Meaningful data integration in the real, schema-less and complex Big Data world of database and semantic web using multidisciplinary and multi-technology method

UNIVERSITË Paris XII

➤ The Billion Triple Challenge

 Web of data contain 31 billion RDf triples, that 446million of them are RDF links, 13 Billion government data, 6 Billion geographic data, 4.6 Billion Publication and Media data, 3 Billion life science data
 BTC 2011, Sindice 2011

> The Linked Open Data Ripper

Mapping, Ranking, Visualization, Key Matching, Snappiness

Demonstrate the Value of Semantics: let data integration drive DBMS technology

Large volumes of heterogeneous data, like link data and RDF

Implementation of Big

Data

Platforms for Large-scale Data Analysis

Parallel DBMS technologies

- Proposed in late eighties
- Matured over the last two decades
- Multi-billion dollar industry: Proprietary DBMS Engines intended as Data Warehousing solutions for very large enterprises

Map Reduce

- pioneered by Google
- popularized by Yahoo! (Hadoop)

Implementation of Big Data

- Overview:
 - Data-parallel programming model
 - An associated parallel and distributed

implementation for commodity clusters

- Pioneered by Google
 - Processes 20 PB of data per day
- Popularized by open-source Hadoop
 - Used by Yahoo!, Facebook,

Amazon, and the list is growing ...

Parallel DBMS technologies

- Popularly used for more than two decades
 - Research Projects: Gamma, Grace, ...
 - Commercial: Multi-billion dollar industry but access to only a privilegec few
- Relational Data Model
- Indexing
- Familiar SQL interface
- Advanced query optimization
- Well understood and studied

Zetta-Byte Horizon

- - = 1000⁷bytes
 - $= 10^{21}$ bytes
 - = 1000<u>exabytes</u>
 - = 1 <u>billion</u> <u>terabytes</u>.
- As of 2009, the entire World Wide Web was estimated to contain close to 500 exabytes. This is a half zettabyte

➤ the total amount of global data is expected to grow to 2.7 zettabytes during 2012. This is 48% up from 2011

- 1. B. Brown, M. Chuiu and J. Manyika, "Are you ready for the era of Big Data?" McKinsey Quarterly, Oct 2011, McKinsey Global Institute
- 2. C. Bizer, P. Bonez, M. L. Bordie and O. Erling, "The Meaningful Use of Big Data: Four Perspective Four Challenges" SIGMOD Vol. 40, No. 4, December 2011
- 3. D. Boyd and K. Crawford, "Six Provation for Big Data" A Decade in Internet Time: Symposium on the Dynamics of the Internet and Society, September 2011, Oxford Internet Institute
- 4. D. Agrawal, S. Das and A. E. Abbadi, "Big Data and Cloud Computing: Current State and Future Opportunities" ETDB 2011, Uppsala, Sweden
- 5. D. Agrawal, S. Das and A. E. Abbadi, "Big Data and Cloud Computing: New Wine or Just New Bottles?" VLDB 2010, Vol. 3, No. 2
- 6. F. J. Alexander, A. Hoisie and A. Szalay, "Big Data" IEEE Computing in Science and Engineering journal 2011
- 7. O. Trelles, P Prins, M. Snir and R. C. Jansen, "Big Data, but are we ready?" Nature Reviews, Feb 2011
- 8. K. Bakhshi, "Considerations for Big data: Architecture and approach" Aerospace Conference, 2012 IEEE
- 8. S. Lohr, "The Age of Big Data" The New York times Publication, February 2012
- 10. M. Nielsen, "A guide to the day of big data", Nature, vol. 462, December 2009

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Tomasz Hyla tomasz.hyla@zut.edu.pl

Access to sensitive data using mobile devices. *Current problems* solutions and trends

ICONS 2014, Nice, France

Trends

> Mobile market is growing rapidly...

More and more data is stored in our mobiles:

- Sensitive data our private or business information
- Private messages
- Location information
- Passwords, credit card numbers
- ➤ Files:
 - Business contracts
 - Confidential documents
 - Private pictures, videos
- That's a lot !!!

> How we use our mobiles?:

- >In diffrent locations including public transport?
- ➤Mobile is usually always with us
- We store data using cloud drives
- >At work we use smartfons and tablets:
 - to read docs
 - to run a many apps

Problems

- **1. Use cloud of cloud services increases** How we can control and trust "cloud providers" ?
- 2. Storing sensitive data without encryption on removable media such as a micro SD card
- 3. Apps which:
 - request access to personal data like SMS/MMS messages, contacts
 - have ability to make phone calls and send Premium SMS messages.

4. Mobile apps risk:

- trojan apps that the user is tricked into installing
- errors in design or implementation that expose the mobile device data to interception and retrieval by attackers.
- 5. Constant tracking of user location (GPS, IP based)
- 6. Using unsafe sensitive data transmission (WiFi without encryption or WEP encryption)
- 7. Lost of smartphone / tablet

Problems

Hardware and software is less and less under your control: is is designed , developed, controled by:

```
" … a real nowhere Man,
Sitting in his Nowhere Land,
Making all his nowhere plans
For .. "*
```

*Beatles – Nowhere Man Lyrics

Solutions

- Increase users knowledge about security
- Use mobile antivirus
- Rethink "BYOD" concept private and public mobiles
- > Use MDM systems for corporate users:
 - they optimize the functionality and security of a mobile
 - To keep "BYOD" from translating to "bring your own disaster," IT needs MDM.
 - Functions such as policy enforcement and remote wipe are now standard (supported by Apple's iOS and Google's Android)
- Use encryption for documents stored inside mobile device
- Use private clouds instead of public ones
- > Application developers:
 - Apple provides a Secure Coding Guide with iOSspecific
 - Google runs a Google Group for Android Security Discussions

Global Smartphone Sales by Platform - Q3 2013 (Gartner)

Tech-Thoughts ©

80 72 64 Samsung millions of tablets Apple Amazon 56 Microsoft Acer Asus Others B&N Lenovo 48 40 32 24 16 8 0 2Q 2010 4Q 2010 2Q 2011 2Q 2012 4Q 2012 2Q 2013 4Q 2013 4Q 2011

How the tablet market has grown

