Resiliency Threats to Critical Infrastructures

Andy Snow, PhD
School of Information & Telecommunication Systems
Ohio University
asnow@ohio.edu
Outline

A. Telecom & Network Infrastructure Risk
B. Telecommunications Infrastructure
C. RAM (Reliability, Availability, Maintainability) and Resiliency
Outline

A. *Telecom & Network Infrastructure Risk*
B. Telecommunications Infrastructure
C. Reliability, Availability, Maintainability (RAM) and Resiliency
A. Telecom & Network Infrastructure Risk

- Human Perceptions of Risk
- Threats (natural and manmade)
- Vulnerabilities
- Faults Taxonomy
- Service Outages
- Single Points of Failure
- Over-Concentration
- Risk as a $f(\text{Severity, Likelihood})$
- Protection through fault prevention, tolerance, removal, and forecasting
- Best Practices
Human Perceptions of Risk

• Perceptions of “Rare Events”
 – Overestimate the chance of good outcomes
 – Underestimate the chance of bad outcomes

• Which is more likely?
 1. Winning the “Big Lotto”
 2. Getting hit by lightning
 3. Being killed by a large asteroid over an 80-year lifetime
Human Perceptions of Risk

• Perceptions of “Rare Events”
 – Overestimate the chance of good outcomes
 – Underestimate the chance of bad outcomes

• Which is more likely?
 1. Winning the “Big Lotto”
 2. Getting hit by lightning
 3. Being killed by a large asteroid over an 80-year lifetime
 (about 1 chance in 1 Million)*

We Expect Dependability attributes from our Critical Infrastructure

- Reliability
- Maintainability
- Availability
- Resiliency
- Data Confidentiality
- Data Integrity

We Expect *Dependability* from our Critical Infrastructure

- **Reliability**
 - We expect our systems to fail very infrequently

- **Maintainability**
 - When systems do fail, we expect very quick recovery

- **Availability**
 - Knowing systems occasionally fail and take finite time to fix, we still expect the services to be ready for use when we need it
We Expect *Dependability* from our Critical Infrastructure (Continued)

• **Resiliency**
 – We expect our infrastructure not to fail cataclysmically
 – When major disturbances occur, we still expect organizational missions and critical societal services to still be serviced

• **Data Confidentiality**
 – We expect data to be accessed only by those who are authorized

• **Data Integrity**
 – We expect data to be deleted or modified only by those authorized
Are our Expectations Reasonable?

• Our expectations for dependable ICT systems are high
• So is the cost
 – Spend too little – too much risk
 – Spend too much – waste of money
• There is an elusive equilibrium point
We Focus on More Reliable and Maintainable Components

• How to make things more reliable
 – Avoid single points of failure (e.g. over concentration to achieve economies of scale?)
 – Diversity
 • Redundant in-line equipment spares
 • Redundant transmission paths
 • Redundant power sources

• How to make things more maintainable
 – Minimize fault detection, isolation, repair/replacement, and test time
 – Spares, test equipment, alarms, staffing levels, training, best practices, transportation, minimize travel time
But Things Go Wrong!

- Central Office facility in Louisiana
- Generators at ground level outside building
- Batteries installed in the basement
- Flat land 20 miles from coast a few feet above sea level
- Hurricane at high tide results in flood
- Commercial AC lost, Generators inundated, basement flooded
- Facility loses power, communications down
- Fault tolerant architecture defeated by improper deployment
Fukushima Nuclear Accident

• Nuclear reactor cooling design required AC power
• Power Redundancy
 – Two sources of commercial power
 – Backup generators
 – Contingency plan if generators fail? Fly in portable generators
• Risks?
 – Power plant on coast a few meters above sea-level
 – Tsunami protection: a 10 meter wall
Fukushima Nuclear Accident (Continued)

• Design vulnerabilities?
 – Nuclear plant requires AC Power for cooling
 – Tsunami wall 10 meters high, in a country where in the last 100 years numerous > 10 meter tsunamis occurred
 – Remarkably, backup generators at ground level (not on roofs !!!)

• Where do tsunamis come from?
 – Ocean floor earthquakes

• What can a severe land-based earthquake do?
 – Make man-made things fall, such as AC power lines
Sequence of Events: Fukushima Nuclear Accident

1. Large land based and ocean floor earthquake
 - AC transmission lines fall
 - Twelve meter tsunami hits Fukushima

2. Backup Generators
 - Startup successfully, then
 - Flooded by tsunami coming over wall

3. Portable generators
 - Flown in
 - Junction box vault flooded

4. Nuclear reactors overheat, go critical, and explode

For 40 years, people walked by AC generators at ground level and a 10 meter tsunami wall !!!!
9-11 Effect
Geographic Dispersal of Human and ITC Assets
Pre 9-11 IT Redundancy

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Single IT Facility Reliability</th>
<th>Redundant IT Facility Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.90</td>
<td>0.9900</td>
</tr>
<tr>
<td>2</td>
<td>0.95</td>
<td>0.9975</td>
</tr>
<tr>
<td>3</td>
<td>0.99</td>
<td>0.9999</td>
</tr>
</tbody>
</table>
Key Assumptions

1. Failures are independent
2. Switchover capability is perfect
9-11: Some Organizations Violated These Assumptions

1. Failures not independent
 - Primary in WTC1
 - Backup in WTC1 or WTC2

2. Switchover capability disrupted
 - People injured or killed in WTC expected to staff backup facility elsewhere
 - Transportation and access problems

Copyright 20014 Andrew Snow All Rights Reserved
Post 9-11 IT Redundancy Perspectives

- No concentrations of people or systems to one large site
- Geographically dispersed human and IT infrastructure
- Geographic dispersal requires highly dependable networks
- **Architecture possible with cloud computing !!**
Geographic Dispersal

Challenges in Ensuring Resilient Critical Infrastructure

- Communication Infrastructure Convergence
- Communication Industry Sector Consolidations
- Intra- and Inter-Sector Dependence
- High Resiliency = $$$
- Assessing Risk is difficult
- Vulnerability Dilemma: Secrecy vs. Sunshine
Convergence, Consolidation and Interdependence

• The outages of yester-year affected voice, data OR video
• The outages of today and tomorrow affect all three.
 – Technological convergence
 – Telecom mergers and acquisitions
• Inter-sector dependence
 – Geographic overlay of telecom, natural gas, electricity, and water?
 – Telecom needs power…..power needs telecom
 – SCADA separate from IT?
High Resiliency Levels = = $$$$$

– Who Pays??
– Regulatory Regime: Unregulated vs. Price Cap vs. Rate-of-Return (RoR)
– Competitive vs. Noncompetitive markets
– Service Provider Economic Equilibrium Points
 • Economies of Scale vs. Vulnerability Creation
 • Proactive vs. Reactive Restoration Strategies
 • Geography: Urban vs Rural
Assessing Risk is Difficult

- Severity
 - Economic impact
 - Geographic impact
 - Safety impact

- Likelihood
 - Vulnerabilities
 - Means and Capabilities
 - Motivations
Vulnerability Dilemma: Secrecy vs. Sunshine

- Market correction of vulnerabilities vs. Exposing CIP to exploitation
- Known vs. Unknown vulnerabilities
- Customer knowledge of service provider vulnerabilities?
- Data sharing
 - National, Regional, State, County, Municipal
- Tracking outages as a bellwether for Resiliency deficits
 - Establishing measures and reporting thresholds
- Tracking frequency, size, duration of events
Infrastructure Protection and Risk

- Outages
- Severity
- Likelihood
- Fault Prevention, Tolerance, Removal and Forecasting
Infrastructure Protection and Risk

- Outages
- Severity
- Likelihood

Fault Prevention, Tolerance, Removal and Forecasting

RISK
Risk – ID & Map Vulnerabilities

- High Severity, Low Chance
- Low Severity, Low Chance
- Low Severity, High Chance
- High Severity, High Chance
Risk

- High Severity
- Low Chance
- Low Severity
- High Chance

- I: High Severity, High Chance
- II: Low Severity, High Chance
- III: High Severity, Low Chance
- IV: Low Severity, Low Chance

Copyright © 2014 Andrew Snow. All Rights Reserved.
Risk

- High Severity, Low Chance
- Low Severity, Low Chance
- Low Severity, High Chance
- High Severity, High Chance

Copyright 20014 Andrew Snow All Rights Reserved
Vulnerabilities and Threats

- **Vulnerability** is a weakness or a state of susceptibility which opens up the infrastructure to a possible outage due to attack or circumstance.
- The cause of a vulnerability, or error state, is a system **fault**.
- The potential for a vulnerability to be exploited or triggered into a disruptive event is a **threat**.
- Vulnerabilities, or faults, can be exploited intentionally or triggered unintentionally.
Proactive Fault Management

- **Fault Prevention** by using design, implementation, and operations rules such as standards and *industry best practices*
- **Fault Tolerance** techniques are employed, wherein equipment/process failures do not result in service outages because of fast switchover to equipment/process redundancy
- **Fault Removal** through identifying faults introduced during design, implementation or operations and taking remediation action.
- **Fault Forecasting** where the telecommunication system fault behavior is monitored from a quantitative and qualitative perspective and the impact on service continuity assessed.
Telecommunication Infrastructure
Threats and Vulnerabilities

• Natural Threats
 • Water damage
 • Fire damage
 • Wind damage
 • Power Loss
 • Earthquake damage
 • Volcanic eruption damage

• Human Threats
 • Introducing or triggering vulnerabilities
 • Exploiting vulnerabilities (hackers/crackers, malware introduction)
 • Physical Vandalism
 • Terrorism and Acts of War

• Fault Taxonomy
Reference

Probabilities

- Risk assessments requiring “probabilities” have little utility for rare events
- Why? Can’t rationally assess probability
- Such probabilistic analysis attempts may also diminish focus of the root cause of the outage, and may detract from remediating vulnerabilities
- In the 9-11 case the issue was one of TCOM “over-concentration” or creation of a large SPF
September 11, 2001

• A large telecommunications outage resulted from the collapse of the world trade centers
 – Over 4,000,000 data circuits disrupted
 – Over 400,000 local switch lines out

• Pathology of the event
 – Towers collapsed
 – Some physical damage to adjacent TCOM building
 – Water pipes burst, and in turn disrupted TCOM facility power and power backup facilities

• What was the a priori probability of such an event and ensuing sequence?
 – \(P = \Pr\{\text{Successful hijack}\} \times \Pr\{\text{Building Collapse}\} \times \Pr\{\text{Water Damage}\} \)
 – Infinitesimal??
Some Conclusions about Vulnerability

• Vulnerability highly situational, facility by facility
Outline

A. Telecom & Network Infrastructure Risk
B. Telecommunications Infrastructure
C. RAMS and Resiliency
B. Telecommunications Infrastructure

• Wireline architecture and vulnerabilities
• Wireless architecture and vulnerabilities
PSTN End to End Connections
Switching Infrastructure
Dispersal/Concentration

Retrieved from Wikipedia
US Growth in Fiber & High Speed Digital Circuits to Customer Premises
Transmission Vulnerabilities

• Fiber cuts with non-protected transmission systems
• Fiber over Bridges
• Fiber transmission failures inside carrier facilities
• Digital Cross Connect Systems
• Local Loop Cable Failures
Transmission Vulnerabilities

• Fiber cuts with non-protected transmission systems:
 – No backup path/circuits deployed.
 – Often done for economic reasons
 – In urban areas where duct space is at a premium
 – In rural areas where large distances are involved.

• Fiber over Bridges:
 – Fiber is vulnerable when it traverses bridges to overcome physical obstacles such as water or canyons
 – There have been reported instances of fires and auto/truck accidents damaging cables at these points
Transmission Vulnerabilities

• **Fiber transmission failures inside carrier facilities:**
 – Studies by FCC staff and other researchers have demonstrated that the majority of fiber transmission problems actually occur inside carrier facilities
 – Caused by installation, and maintenance activities.

• **Digital Cross Connect Systems:**
 – Although hot standby protected equipment, DACSs have failed taking down primary and alternate transmission paths.
 – These devices represent large impact SPFs.
Proper SONET Ring Operation

Means same fiber, cable, duct, or conduit

Cut

Failure
Improper Operation of SONET Rings

Improper Maintenance:
Node’s previous failure, and subsequent fiber cut prior to spare on hand

Means same fiber, cable, duct, or conduit

Improper Deployment:
“Collapsed” or “Folded” Ring sharing same path or conduit

Un-repaired Failure
SS7 A-Links

Proper Deployment

Improper Deployment

Means same fiber, cable, duct, or conduit
SS7 A-Links

Diagram showing the components of a SS7 A-Links system:
- Fiber Cable 1
- Fiber Cable 2
- SW (Switch)
- ‘A’ Link
- DS3 Mux
- F.O. Transceiver
- DC Power Source
- Fuse

Copyright 20014 Andrew Snow All Rights Reserved
Power Architecture & Vulnerabilities

• Redundant Power
 – Commercial AC
 – AC Generator backup
 – Batteries for uninterruptible power systems (UPS)
Inoperative Alarms

- Loss of commercial power
- Damaged generator
- Untested or inoperable alarms prior to loss and damage
- Batteries Deplete

Diagram:

- Commercial AC
- Backup Generator
- Rectifiers
- DC Distribution Panel
- Battery Backup
- Alarms
- Inoperable
Economy of Scale Over-Concentration Vulnerabilities

Distributed Topology

To Tandem

Switches Concentrated

To Tandem

Local Loop

Fiber Pair Gain

Trunks

Building
PCS Architecture
PCS Component Failure Impact

<table>
<thead>
<tr>
<th>Components</th>
<th>Users Potentially Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
<td>100,000</td>
</tr>
<tr>
<td>Mobile Switching Center</td>
<td>100,000</td>
</tr>
<tr>
<td>Base Station Controller</td>
<td>20,000</td>
</tr>
<tr>
<td>Links between MSC and BSC</td>
<td>20,000</td>
</tr>
<tr>
<td>Base Station</td>
<td>2,000</td>
</tr>
<tr>
<td>Links between BSC and BS</td>
<td>2,000</td>
</tr>
</tbody>
</table>
Outages at Different Times of Day
Impact Different Numbers of People

Copyright 20014 Andrew Snow All Rights Reserved
Concurrent Outages are a Challenge for Network Operators
Circuit to Packet Switch Interface

PSTN Infrastructure
- 800 DB
- LNP DB
- SS7 Network
 - Circuit Switch
 - PBX

Voice over IP Infrastructure
- Core Packet Network
 - Trunk Gateway
 - Access Gateway
- Signaling Gateways
- Call Connection Agent
- Billing Agent

Traffic

Control
Outline

A. Telecom & Network Infrastructure Risk
B. Telecommunications Infrastructure
C. RAMS and Resiliency
Dependability

- Reliability – $f(\text{MTTF})$
- Maintainability – $f(\text{MTTR})$
- Availability – $f(\text{MTTF, MTTR})$
- Resiliency -- $f(\text{MTTF, MTTR, Severity})$
- Resiliency Metrics and Thresholds
Reliability Curves

MTTF = 1/2 Yr
MTTF = 1 Yr
MTTF = 2 Yrs
MTTF = 3 Yrs
MTTF = 4 Yrs
MTTF = 5 Yrs
Availability

• Availability is an attribute for either a service or a piece of equipment. Availability has two definitions:
 – The chance the equipment or service is “UP” when needed (Instantaneous Availability), and
 – The fraction of time equipment or service is “UP” over a time interval (Interval or Average Availability).

• Interval availability is the most commonly encountered.

• Unavailability is the fraction of time the service is “Down” over a time interval \(U = 1 - A \)
Availability (Continued)

\[
A = \frac{UPTIME \; INTERVAL \; TIME}{MTTF} \quad \text{Historical Actual}
\]

\[
A = \frac{MTTF}{MTTF + MTTR} \quad \text{Point Estimate Of RV}
\]
Resiliency

- RAM isn’t enough!
- Large telecommunication infrastructures are rarely completely “up” or “down”.
- They are often “partially down” or “mostly up”
- Rare for an infrastructure serving hundreds of
- Resiliency describes the degree that the network can service users when experiencing service outages
Outage Profiles

Outage 1: Failure and complete recovery. E.g. Switch failure

Outage 2: Failure and graceful recovery. E.g. Fiber cut with rerouting

SV = SEVERITY OF OUTAGE
D = DURATION OF OUTAGE
Resiliency Thresholds

- RESILIENCY deficits are not small event phenomena.
- Filter out the smaller outages with thresholds
Severity

• The measure of severity can be expressed a number of ways, some of which are:
 – Percentage or fraction of users potentially or actually affected
 – Number of users potentially or actually affected
 – Percentage or fraction of offered or actual demand served
 – Offered or actual demand served
• The distinction between “potentially” and “actually” affected is important.
• If a 100,000 switch were to fail and be out from 3:30 to 4:00 am, there are 100,000 users potentially affected. However, if only 5% of the lines are in use at that time of the morning, 5,000 users are actually affected.
User & Carrier Perspectives

- **User Perspective** – High End-to-End Reliability and Availability
 - Focus is individual

- **Carrier Perspective** – High System Availability and Resiliency
 - Focus is on large outages and large customers
Minimizing Severity of Outages Makes Infrastructure More Resilient

• It is not always possible to completely avoid failures that lead to outages.
• Proactive steps can be taken to minimize their size and duration.
 – Avoid overconcentration and single points of failure that can affect large numbers of users (“Mega-SPF”)
 – Don’t defeat fault tolerance by improper deployment
 – Have recovery assets optimally deployed to minimize the duration of outages.
 – Track outages and their root causes
 – Identify vulnerabilities, assess risk, prioritize them and remove the high impact/probability ones
Thankyou.

Have a great conference!!