Challenges in Managing Health-Linked Big Data

Moderator
Hassan Khachfe, Lebanese International University, Lebanon

Panelists
Sung-Bae Cho, Yonsei University, Korea
Sandjai Bhulai, VU University Amsterdam, The Netherlands
Thomas Klemas, MIT Lincoln Laboratory, USA
Alexander Ponomarenko, Nizhny Novgorod, Russia
Big Data is the “new oil”
- $100B annually in sensitive devices
- One firm may pay more than $1.5M/yr for storage

Data is increasing exponentially ➔ Need for more potent storage media
- 5¼ disks ➔ 750 KB
- 3½ disks ➔ 1 MB
- CD’s
- DVD’s
- BR’s
- HD, shares drives, clouds, etc.
Data is generated from all types of applications

- simple
 - Office files
 - Forms
 - news feeds
 - Etc.

- Complex
 - Media sharing
 - social networks
 - Space telescopes
 - etc.
In Healthcare, data needs special treatment

- **Privacy**
 - Patients’ records
 - Insurance Claims
 - Etc.

- security / financial
 - Government files
 - Research repositories
 - Etc.

- **Complexity**
 - Imaging files
 - Telemedicine
 - Simulations
Opportunities
- Economic growth
- Technology enhancement
- Technology transfer
- Etc.

Challenges
- Technology
- Cost
- Privacy
- Legislations
- Culture
- Etc.
A new way to organize and to search the data

Data analytics 2014, Rome, Italy

Alexander Ponomarenko,
National Research University Higher School of Economics, LATNA Laboratory
<table>
<thead>
<tr>
<th>Name</th>
<th>Surname</th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
<th>Max Speed</th>
<th>Acceleration</th>
<th>Stamina</th>
<th>Short Pass</th>
<th>Long Pass</th>
<th>Shot Accuracy</th>
<th>Shot Power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Surname</td>
<td>Age</td>
<td>Height</td>
<td>Weight</td>
<td>Max Speed</td>
<td>Acceleration</td>
<td>Stamina</td>
<td>Short Pass</td>
<td>Long Pass</td>
<td>Shot Accuracy</td>
<td>Shot Power</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>--------------</td>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>

Query:
- $16 < \text{Age} < 23$
- Max Speed > 25
- Shot Power > 40
- Shot Accuracy \rightarrow MAX
Why is similarity?

• Any event in the history of organism is, in a sense, unique.

• Recognition, learning, and judgment presuppose an ability to categorize stimuli and classify situations by similarity

• Similarity (proximity, resemblance, communality, representativeness, psychological distance, etc.) is fundamental to theories of perception, learning, judgment, etc.
Max Common Subgraph Similarity

\[sim(G_1, G_2) = \frac{|V(G_1, G_2)| + |E(G_1, G_2)|^2}{(|V(G_1)| + |E(G_1)|) \cdot (|V(G_2)| + |E(G_2)|)} \]

\[d(G_1, G_2) = 1 - sim(G_1, G_2) \]
Tanimoto metric

\[
tanimoto = \frac{c}{a + b - c}
\]

- \(a\) – number of non-zero bits in first molecule fingerprint
- \(b\) – number of non-zero bits in second molecule fingerprint
- \(c\) – number of common non-zero bits

Fingerprint is array of bit where every bit corresponds to particular molecular feature.
Nearest Neighbor Search

Let D – domain

$d : D \times D \rightarrow R_{[0; \infty)}$ - distance function which satisfies properties:

- strict positiveness: $d(x, y) > 0 \iff x \neq y$,
- symmetry: $d(x, y) = d(y, x)$,
- reflexivity: $d(x, x) = 0$,
- triangle inequality: $d(x, y)+d(y, z) \geq d(x, z)$.

Given a finite set $X = \{p_1, \ldots, p_n\}$ of n points in some metric space (D, d), need to build a data structure on X so that for a given query point $q \in D$ one can find a point $p \in X$ which minimizes $d(p, q)$ with as few distance computations as possible.
Examples of Distance Functions

- L_p Minkovski distance (for vectors)
 - L_1 – city-block distance
 $$L_1(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$
 - L_2 – Euclidean distance
 $$L_2(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 - L_∞ – infinity
 $$L_\infty(x, y) = \max_{i=1}^{n} |x_i - y_i|$$

- **Edit distance** (for strings)
 - minimal number of insertions, deletions and substitutions
 - $d('application', 'applet') = 6$

- **Jaccard’s coefficient** (for sets A,B)
 $$d(A, B) = 1 - \frac{|A \cap B|}{|A \cup B|}$$
Range Query

- range query
 \[R(q,r) = \{ x \in X \mid d(q,x) \leq r \} \]

... all museums up to 2km from my hotel ...
Nearest Neighbor Query

• the nearest neighbor query
 \[\text{NN}(q) = x \]
 \[x \in X, \ \forall y \in X, \ d(q,x) \leq d(q,y) \]

• k-nearest neighbor query
 \[\text{k-NN}(q,k) = A \]
 \[A \subseteq X, \ |A| = k \]
 \[\forall x \in A, \ y \in X - A, \ d(q,x) \leq d(q,y) \]

... five closest museums to my hotel ...
Our requirements for structure

Scalability
- Distributed Architecture
- Scalable with number of elements
- Insert and Search $\sim \log(n)$

Universality
- Abstract Metric Space
- Scalable on number of dimension

- There should not be any central element (like p2p system)
- Any element of data structure should be able to perform search
- Any element of data structure should be able to start Adding process of new data

Relaxation to Approximate Nearest Neighbor (ANN)
• Connect all data into the global overlay network on the level of data
• Use metric space search instead of sequence of exact searches
The Small World Networks

Two famous “Blind” models: “Watts-Strogatz” and “Barabási–Albert”

Navigable small world model of Klienberg
Navigable Small World

$u=1$

“Top level” — first (oldest) elements

$u=2$

$u=3$

“Bottom” level — all elements

$u=\log(N)-1$

Navigable small world

$u=\log(N)$

R_1

R_2

query element
Wikipedia dataset

Vector Space Model

\[d_j = (w_{1,j}, w_{2,j}, \ldots, w_{n,j}) \]
\[q = (w_{1,q}, w_{2,q}, \ldots, w_{n,q}) \]
\[\text{sim}(d_j, q) = \frac{d_j \cdot q}{\|d_j\| \cdot \|q\|} = \frac{\sum_{i=1}^{n} w_{i,j} w_{i,q}}{\sqrt{\sum_{i=1}^{n} w_{i,j}^2} \sqrt{\sum_{i=1}^{n} w_{i,q}^2}} \]

Wikipedia (cosine similarity): is a data set that contains 3.2 million vectors represented in a sparse format. This set has an extremely high dimensionality (more than 100 thousand elements). Yet, the vectors are sparse: On average only about 600 elements are non-zero.
Scaling of Navigable Small World data structure

Distance Computations

Number of objects

Distance Computations

Thousands

Thousands
Non-Metric Space Library

Available at: https://github.com/searchivarius/NonMetricSpaceLib
Challenges in Managing Health Linked Big Data

Data Analytics 2014

Sandjai Bhulai
Associate Professor
$600 to buy a disk drive that can store all of the world’s music

5 billion mobile phones in use in 2010

30 billion pieces of content shared on Facebook every month

40% projected growth in global data generated per year vs. 5% growth in global IT spending
$300 billion
potential annual value to US health care—more than double the total annual health care spending in Spain

€250 billion
potential annual value to Europe’s public sector administration—more than GDP of Greece

$600 billion
potential annual consumer surplus from using personal location data globally
What Happens in an Internet Minute?

- 639,800 GB of global IP data transferred
- 135 Botnet infections
- 1.3 million new Facebook users
- 100 million new LinkedIn accounts
- 61,141 hours of music
- 2,040 million emails sent
- 204,000 new app downloads
- 47,000 new Amazon purchases
- 20 new victims of identity theft
- 20 million photo views
- 320+ new Twitter accounts
- 3,000 photo uploads
- 100,000 new tweets
- 277,000 logins
- 2+ million search queries
- 6 million Facebook views
- 30 hours of video uploaded
- 1.3 million video views

And Future Growth is Staggering

- Today, the number of networked devices = the global population
- By 2015, the number of networked devices = 2x the global population
- In 2015, it would take you 5 years to view all video crossing IP networks each second
Social listening:
10 Top Apps For Eating Healthy

An APP a day keeps the doctor away....!
Health apps: 1 op de 5 smartphone-bezitters managet gezondheid
Challenges in Managing Health Linked Big Data

August 27, 2014

Sung-Bae Cho
Department of Computer Science, Yonsei University
Seoul 120-749, Republic of Korea
http://sclab.yonsei.ac.kr
Outline

• Big data in healthcare

• The 3 “Vs” of big data in healthcare

• An architecture of big data analytics

• Challenges
Big Data in Healthcare

- Problem of big data in healthcare
 - Electronic health data sets are so large and complex that they are difficult to manage with traditional software and hardware; nor can they be easily managed with traditional or common data management tools and methods.

- "Big data" in the healthcare industry
 - Clinical data from clinical decision support systems: physician’s written notes and prescriptions, medical imaging, laboratory, pharmacy, insurance, and other administrative data.
 - Patient data in electronic patient records.
 - Machine generated/sensor data, such as from monitoring vital signs.
 - Social media posts, including tweets, blogs, status updates on Facebook and other platforms, and web pages.
 - Less patient-specific information, including emergency care data, news feeds, and articles in medical journals.
The 3 “Vs” of Big Data in Healthcare

• **Volume**
 - Personal medical records, radiology images, clinical trial data FDA submissions, human genetics and population data genomic sequences
 - Newer forms of big data, such as 3D imaging, genomics and biometric sensor readings

• **Velocity**
 - Velocity of mounting data increases with data that represents regular monitoring, such as multiple daily diabetic glucose measurements, and blood pressure readings

• **Variety**
 - **Structured and semi-structured data**: instrument readings and data generated by the ongoing conversion of paper records to electronic health and medical records
 - **Unstructured data**: office medical records, handwritten nurse and doctor notes, hospital admission and discharge records, paper prescriptions, radiograph films, MRI, CT and other images
An Architecture of Big Data Analytics

(Raghupathi & Raghupathi, 2014)
Challenges

• Legislation and governance challenges
 – Managerial issues of ownership, governance and standards have to be considered; Healthcare data is rarely standardized, often fragmented, or generated in legacy IT systems with incompatible formats

• Technical challenges
 – Data extraction and linkage
 – Data quality and accuracy

• Big data analytics challenges
 – Many architectures and platforms, and the dominance of the open source paradigm in the availability of tools
 • Lack of technical support and minimal security
 • Require a great deal of programming skills
 – Challenge of developing methodologies and the need for user-friendly interfaces
 • Big data analytics in healthcare needs to be packaged so it is menu-driven, user-friendly and transparent
Challenges of Health Linked Big Data
Data Analytics / Global Health Panel Presentation

27 August 2014

Dr. Thomas J. Klemas
Senior Fellow
Sensemaking/PACOM Fellowship
Network Science Research Center
Swansea University, Swansea, Wales
Introduction to Big Data

Vast, complex data sets are a resource of great potential but require new approaches to analyze.

Technology is enabler: storage capacity doubling every 40 months.

Data is being generated at a dizzying rate which is also rapidly accelerating.

By 2003, 5 exabytes of data were generated by human kind.
Today, this much data is generated in a few days.
Now, total human data is measured in Zetabytes (ZB) and is expected to double every 2 years.

Digital format enables application of Data Science methods.

By 2000, 25% of data stored digitally.
Today more than 98% of data is stored digitally.

2012: Big Data Research and Development Initiative ($200M)
Characteristics of Big Data
Related Challenges

Size: vast amounts of historical data

Velocity: streams of real-time, very recent data

Diversity: many components of data that can be stored in variety of forms

Uncertainty: data and metadata can be incorrect or incomplete

Accessibility: availability of data to those that need it

Goal: Maximize value – Keep important data, Use best sources, Integrate appropriate metadata and linkage to other enabling data
Big Data in Global Health Care

Healthcare accounted for 500 PB in 2012 but expected to reach 25000 PB by 2020

- Conversion of existing data to electronic form
- Generation of new data: images, sensor readings, genomics

Traditional Global Health Data Sources

- Clinical data records: diagnoses, prescriptions, notes, images, …
- Genetic data, biometrics from sensors
- Self-reported data, billing and cost data
- Statistics from medical facilities, clinical trials

Additional sources to enable big data: Social & economic data, environmental factors

Significant potential to aid medical professionals with Analytics and Data Science improvements

Example: Colorectal Cancer
Electronic Health Records (EHR)
Adoption Rate and Related Details

2005: 30% medical facilities use EHR in USA*
2008: 17% of doctor offices
2009
 9% of hospitals
 Health Information Technology for Economic and Clinical Health (HITECH) Act
2011
 50% medical facilities use EMR in USA*
 75% hospitals use EMR in USA*
2012
 40% of doctor’s offices
 44% of hospitals
2013: Nearly $16.6B HITECH funding disbursed to more than 4100 hospitals and 320K medical professionals

* Different sources offered different values for EHR adoption. Discrepancy may be due to differing assessment or definition of “EHR”
Improving Global Health

Big Data Potential

Medical care contributes an estimated 10% to an individual’s health*
Other factors are more significant to health
 - Behavior
 - Genetics
 - Social and Economic status
 - Environment

Big Data for Healthcare will require integrated analysis of medical data merged with associated external data describing behavior, environment, social and economic factors, etc.

Motivations for Big Data

Potential Benefits

Detect and identify
- Highest Risk Individuals
- Public health threats

Monitor patients and communities

Support Decision Making of Health Professionals and Patients
- Aid diagnosis
- Help focus treatment and evaluate efficacy.
- Predict impact of threats. Aid targeting of resources to combat threats
- Provide valuable statistics and related information
- Improve allocation of and access to resources

Support Discoveries and Innovation
- Recognize patterns that are key factors towards health
- Aid discovery of new relationships or links
- Example: Identify cause and discover cures for disease

Achieve new Paradigm: results-oriented vs service-oriented medical care
- Reduce cost
Challenges to Healthcare Big Data

Quality of data decreases usefulness
- Frequently incomplete or biased by errors and omissions
 - Primarily due to human entry of clinical data
 - Examples: Description of symptoms, notes
 - Lack of context due to incomplete or inaccurate metadata

Limited access to data
- Privacy and security concerns
- Proprietary value of data
- Additional challenge to link with external data sources

Incompatibility between data sets
- Multiple data sets cannot be easily compared due to parameter differences
- Formatting or lack of standards hinder use of data
Overcoming Big Data Challenges Requires Health Data Enhancements

Integration of data
 - Claims and Costs
 - Clinical records and medical images
 - Pharmaceutical RD data, clinical trials
 - Patient behavior and attitude/feelings/opinions data
 - Other

Improved Data quality
 - Data standards
 - Better data entry
 - Automation: Standardized computerized forms, Improved Natural Language Processing, Data Structuring and Grouping tools

Increased Sharing, Security, and Availability of Analytical, Visualization Tools

Innovative Data Science Techniques to optimize impact of data and to achieve transformation to Outcome Driven Medicine
THANK YOU!
References

References (continued)