

24 March 2013

Lisboa

Service Components and Ensembles: Building Blocks for

Autonomous Systems

 - tutorial -

Nikola B. Ġerbedģija

ICAS 2013 The Ninth International Conference on Autonomic and

Autonomous Systems

Nikola Ġerbedģija, 2

Outline
I. Introduction (definition, abstract, motivation, approach)

II. Requirements analyses

Å Practical examples

Å Requirements

III. Modeling

Å Approach

Å SCEL

Å Adaptation patterns

Å Reasoning on system properties

IV. Deployment

- JRESP

- Implementation framework

V. Conclusion (discussion and further work)

♣

c
a
s
e
 s

tu
d

ie
s

Nikola Ġerbedģija, 3

au·ton·o·mous [aw-ton-uh-muhs]

Áadjective

1. Government .

a. self-governing; independent; subject to its own laws only.

b. pertaining to an autonomy.

2. having autonomy; not subject to control from outside;
independent: a subsidiary that functioned as an autonomous unit.

3. Biology .

a. existing and functioning as an independent organism.

b. spontaneous.

ÁOrigin: Greek autónomos with laws of one's own, independent,
equivalent to auto- é

I. Definition: Autonomous

Nikola Ġerbedģija, 4

I. Definition Autonomous systems

ÁWithin the Internet, an Autonomous System (AS) is a collection of connected

Internet Protocol (IP) routing prefixes under the control of one or more network

operators that presents a common, clearly defined routing policy to the Internet.

ÁñAutonomous systems represent the next great step in the fusion of machines,

computing, sensing, and software to create intelligent systems capable of interacting

with the complexities of the real world. Autonomous systems are the physical

embodiment of machine intelligenceò.

ÁAutonomous systems with multiple sensory and effector modules face the problem of

coordinating these components while fulfilling tasks such as moving towards a goal

and avoiding sensed obstacles.

ÁDeals with adaptation, intelligence, sensing, robotics, agent technology, self-

organization, dynamic and independent behavior, awareness, Pervasive services and

mobile computing, self-management context-aware systems, no human intervention.

♣

Nikola Ġerbedģija, 5

Conference on Autonomic and Autonomous Systems

AUTSY: Theory and Practice of Autonomous Systems

ÁDesign, implementation and deployment of autonomous systems;
Frameworks and architectures for component and system autonomy;
Design methodologies for autonomous systems; Composing
autonomous systems; Formalisms and languages for autonomous
systems; Logics and paradigms for autonomous systems; Ambient
and real-time paradigms for autonomous systems; Delegation and trust
in autonomous systems; Centralized and distributed autonomous
systems; Collocation and interaction between autonomous and non-
autonomous systems; Dependability in autonomous systems;
Survivability and recovery in autonomous systems; Monitoring and
control in autonomous systems; Performance and security in
autonomous systems; Management of autonomous systems; Testing
autonomous systems; Maintainability of autonomous systems

Nikola Ġerbedģija, 6

TAAS

ÁMany current Information and Communications Technology (ICT)
systems and infrastructure, such as

Åthe Web, Clouds, Grids and Enterprise Datacenters, Peer-to-Peer
Systems, Social and Urban Computing Systems, Cooperative
Robotic Systems, Distributed Service Systems, and Wireless and
Mobile Computing Systems,

Áhave the characteristic of being

Ådecentralized, pervasive, and composed of a large number of
autonomous entities.

ÁOften systems deployed on such infrastructure need to run in highly
dynamic environments, where physical context, social context, network
topologies and workloads are continuously changing. As a
consequence, autonomic and adaptive behaviors become necessary
aspects of such systems.

Nikola Ġerbedģija, 7

EU, FP7 Awareness Initiative: Challenges

Å101 Awareness Challenges

Å72. To have good and sustainable test bed and test environment for experiments. Nenad Stojnic

Å71. Introducing economic models. Ivova Brandic

Å70. Monitoring of large scale adaptive infrastructures and mobile devices. Ivova Brandic

Å69. To disambiguate the awareness concepts. Ramana Reddy

Å68. Checking, requirements, model, verification and validation at runtime. Hausi Muller

Å67. Representation and synchronization of requirements at runtime. Nelly Bencomo

Å66. To address real problems by means of exemplars. Luciano Baresi

Å65. To have intelligent runtime environments that support adaptation, keeping and managing the model also at runtime. Carlo Ghezzi

Å64. To exploit a graphical language in order to achieve automatic generation of engines. Tom Keeley

Å63. To have an appropriate mathematical base. Franco Bagnoli

Å62. To enable adaptive systems to learn online. Peter Lewis

Å61. How to describe and to compare information? Yvonne Bernard

Å60. How to ensure safety and correctness? Manuele Brambilla

Å59. How to manage the relationship between individual and group levels? Carlo Pinciroli

Å58. How to achieve adatpivity at runtime? Martin Wirsing

Å57. How to engineer decision systems? Henry Bensler

Å56. How to map raw data to knowledge? Emil Vassev

Å55. Dealing with high and low levels of contexts. Wei Dai

Å54. Considering sociological aspects besides technical aspects. Francois Toutain

Å53. Letting different systems interoperate and collaborate. Guillame Dugue

Å52. How to measure the level of awareness? E.g. the number of variables AND the algorithm that processes the information from the variables. Gusz Eiben

Å51. Measuring and finding metrics for the different kinds of awareness. Franco Zambonelli

Å50. The difficulty of writing precise requirements about flexibility. Peter Lewis

Å49. The difficulty of proving all the properties of an emergent system. Jose Luis Fernandez

Å48. How to improve the communication between local and global systems in swarm robotics?: Matthias Holzl

Å47. Monitoring and controlling emergent properties and specifying and controlling adaptation: Martin Wirsing

Å46. How to know whether a system is aware and the issue of global and local awareness: Rocco De Nicola

Å45. How can services understand what they really need?: Gabriella Castelli

Å44. How do we formally understand what trust is?: Alois Ferscha

Å43. How robot controllers (mind) and mechanical parts (body) can co-evolve? : Evert Haasdijk

Å42. Using competition across the fields to push the research further and faster: Julie McCann

Å41. How is this research going to contribute to the challenges of global warming and sustainability?: Jeremy Pitt

Å40. To have efficient computation: Frederic Gruau

Å39. How modeling can be considered in the development: Alan Brook

Å38. To bring together experimental and theoretical communities: Colette Johnen

Å37. To develop ubiquitous platforms: Stefan Dulman

Å36. Adaptability, evolvability, diversity, spatiality: Akla-Esso Tchao

Å35. To have an operation definition of self-awareness: Giuseppe Valetto

Å34. What actually is a self-organising system and how to build it? Ingo Scholtes

Å33. To model the context and to validate the model itself: Daniel Dubois

Å32. To define real grounded application scenarios: Marco Mamei

Å31. Definition and metrics of self-awareness: Paul Snyder

Å30. How to engineer the system to produce the correct emergent behavior? Christopher Hollander

Å29.To make systems actually know what happens inside them: Rolf Kiefhaber

Å28. How can we say that a system is self-aware? Peter Lewis

Å27. Collective self-awareness from not self-aware components: Peter Lewis

Å26. Systems that exhibit self-awareness as emerging properties: Peter Lewis

Å25. How do components make themselves aware of the surrounding (open) environment?: Xinghui Zhao

Å24. To analyze the emerging patterns in evolving behaviors: Andres Ramirez

Å23. To be aware of what awareness actually means: Jean Botev

Å22. To be aware of neighbours: Venkatraman Iyer

Å21. To combine computer science with social science: Frank Schweitzer

Å20. How to make aware components behave to reach a global optimum? Julia Shaumeier

Å19. How we can learn from human self-awareness? Nils Rosemann

Å18. To develop techniques to control self-organization: Holger Prothmann

Å17. To model, test and verify self-aware systems: Giovanna di Marzo Serugendo

Å16. To bring computers near a level where humans are, not humans down: Glen Fink

Å15. To define when autonomic systems are beneficial or detrimental to a given domain or application: Cortney Riggs

Å14. To develop methodologies and tools to engineer systems: Sven Bruckner

Å13. To build a better theory to analyze the data from the models and from real world: Sven Bruckner

Å12. To build better models to understand the basic principles of self-*: Sven Bruckner

Å11. Grand challenge in Self-Awareness? Real-world apps, with real hard requirements - best research driver there is! Tom Holvoet

Å10. Find construction rules of artificial self-aware systems by revealing the common core in natural collective systems: Thomas Schmickl

Å9. Evolving the step from environmental awareness to self-awareness: Thomas Schmickl

Å8. The role of conservation laws in collective awareness-exchange of mass & energy vs. exchange of information: Thomas Schmickl

Å7. Evolving a collective system that exhibits self-awareness and environmental awareness from scratch: Thomas Schmickl

Å6. Sensors, sensors, sensors: given the volume of interesting data available, how can services understand what they need: SAPERE

Å5. In systems with dynamic service composition, how can we achieve system-level self-awareness of service components? Giacomo Cabri

Å4. Create collective embodied systems where self-healing emerges in response to adverse internal/external conditions: Jon Timmis

Å3. Incentivising users to cooperate by providing access to location data/social groups to study natural human mobility: Walter Colombo

Å2. To understand self-awareness in autonomic systems we must first understand the boundaries of self-over time, context and scale: Ben Paechter

Å1. How can distributed systems with no central controller become collectively self-aware, rather than at individual node level? Emma Hart

Nikola Ġerbedģija, 8

I. Abstract

ÁDeveloping autonomous systems requires adaptable and context
aware techniques.

ÁThe approach described here decomposes a complex system into
service components ï functionally simple individual entities enriched
with local knowledge attributes.

ÁThe internal componentsô knowledge is used to dynamically construct
ensembles of service components.

ÁThus, ensembles capture collective behavior by grouping service
components in many-to-many manner, according to their communication
and operational/functional requirements.

ÁLinguistic constructs and software tools have been developed to support
modeling, validation, development and deployment of autonomous
systems. A strong pragmatic orientation of the approach is illustrated by
a concrete application.

Keywords: Engineering Complex Autonomous Systems, Awareness in software, Adaptive components,

Reasoning about system properties, Case studies (Swarm robotics, Cloud Computing, E-mobility).

1. www.ascens-ist.eu/

2. http://www.aware-project.eu/

3. http://www.fokus.fraunhofer.de/de/quest/projekte/laufende_projekte/ascens/index.html

Nikola Ġerbedģija, 9

I. Motivation - System Needs

ÁNowadays, we deal with distributed (software intensive) systems with
a massive number of nodes with highly autonomic behavior still having
harmonized global utilization of the overall system. Some features:

ÅSelf-awareness and adaptation while operating in unknown environments
or reducing management costs.

ÅMaintenance of major properties even when adapting, e.g., mutual
exclusion, fault tolerance, optimal energy level, distributed access, etc.

ÁGrand challenge in software engineering ï how to organize, program
and reason about these systems

ÁOur everyday life is dependent on new technology which poses extra
requirements to already complex systems:

Åwe expect systems to adapt to changing demands over a long operational
time and

Åwe need reliable systems whose properties can be guaranteed

Åto optimize their energy consumption .

Nikola Ġerbedģija, 10

I. Approach

One engineering response to these challenges is to structure software
intensive systems in ensembles of simple service components featuring
autonomous and self-aware behavior.

ÁModeling:

Åprovide formalisms,

Ålinguistic constructs and

Åprogramming tools

featuring autonomous and adaptive behavior based on awareness!

ÁIntegration of:

ÅFunctional-,

ÅOperational- and

ÅEnergy- awareness

to provide autonomous behavior with reduced energy consumption!

Awareness is the state

or ability to perceive, to

feel, or to be conscious of

events, objects, or

sensory patterns.

Nikola Ġerbedģija, 11

Service Components and Ensembles

 ♣

 ♣

Nikola Ġerbedģija, 12

Overview Approach

 ♣ ♣

Nikola Ġerbedģija, 13

II. Requirements Analyses

To explore the system requirements, three complex application
domains are closely examined:

1. www.ascens-ist.eu/

2. http://www.aware-project.eu/

3. http://www.fokus.fraunhofer.de/de/quest/projekte/laufende_projekte/ascens/index.html

Swarm robotics

Cloud computing

E-mobility

Nikola Ġerbedģija, 14

II. Application Domain

ÁE-mobility is a vision of future transportation by means of electric

vehicles network allowing people to fulfill their individual mobility
needs in an environmental friendly manner (decreasing pollution,
saving energy, sharing vehicles, etc.)

ÁCloud computing is an approach that delivers computing resources to
users in a service-based manner, over the internet, thus re-enforcing
sharing and reducing energy consumption).

ÁSwarm robotics as a multi-robot system that through interaction
among participating robots and their environment can accomplish a
common goal, which would be impossible to achieve by a single robot.

At a first glance electric vehicular transportation, distributed
computing on demand and swarm robotics have nothing really in
common!

Nikola Ġerbedģija, 15

II. Major Application Characteristics

For modeling purposes the following characteristics are observed:

ÅSingle entity (service components)

- Individual goal

ÅGrouping (ensembles)

- Global goal

ÅSelf-awareness

ÅAdaptation

ÅAutonomous and collective behavior

ÅOptimization and

ÅRobustness

Nikola Ġerbedģija, 16

II. Common Characteristics

Comm.

features

Swarm Robotics Cloud computing E-Mobility

Single entity Individual robots Computing resource Driver, vehicle, park place,

charging station

Individual goal Performing certain task Efficient execution Individual route plan, optimize

energy, é

Ensemble A group of cooperative robots

with a same task

application, cpu pool, é Common rout, free vehicles, free

park places, etc

Global goal Coordinated and autonomous

behavior

Resource availability, optimal

throughput, é

Travel and journey optimization,

low energy

Self-awareness Knowledge about own

capabilities

Available resources;

computational requirements, é

Awareness of own state and

restrictions

Adaptation According to environmental

changes, other

entities, goals, etc

According to available

resources

According to traffic, individual

goals, infrastructure, resource

availability

Autonomous

vs. collective

behavior

Optimal coordination of single

entities in joint endeavor

Decentralized decision making,

global optimization

Reaching all destinations in time,

minimizing costs

Optimization Time, energy, performance Availability, computational task

execution

Destination achievement in time,

vehicle/infrastructure usage

Robustness Hardware failures, sensory

noise, limited sensory range and

battery life

Failing resources Range limitation, charging battery

infrastructure resources

Nikola Ġerbedģija, 17

This set of common features serve as a basis for modeling of such
systems leading to a generic framework for developing and
deploying complex autonomic systems.

Four major (autonomic system) principles are:

Å Knowledge (facts about self- and surrounding)

II. Common Characteristics (cont.)

Å Adaptation (dynamic and long-term self-modification to changing
surroundings)

Å Self-awareness (re-examination of own state)

Å Emergence (simple system elements construct complex entities).

Nikola Ġerbedģija, 18

III Modeling

ÁControl systems for the three application domains have many common
characteristics: they are highly collective, constructed of numerous
independent entities that share common goals. Their elements are both
autonomous and cooperative featuring a high level of self-awareness
and self-expressiveness.

ÁA control system built out of such entities must be robust and adaptive
offering maximal utilization with minimal energy and resource use.

Nikola Ġerbedģija, 19

III Modeling: Service Components and Ensembles

A complex system is decomposed in

Å SCs - service components - major individual entities,

Å SCEs - service component ensembles - composition structures

that reflect communication

Further properties:

Å SCs ï are single system entities that have their requirements and

functionality, usually representing their individual goals,

Å SCEs ïare collections of service components usually representing

collective system goals (as means to dynamically structure

independent and distributed system entities).

Nikola Ġerbedģija, 20

III Modeling: Service Components and Ensembles

Nikola Ġerbedģija, 21

Case Studies

Resource ensembles as science clouds

science cloud platform as a Platform as a

Service (PaaS) solution. One scenario

considers that a science cloud platform goes

offline, which means the applications there has

to be made available oat one or more of other

nodes

Ensembles of self-aware robots

used to perform the most dangerous activities,

for example in a disaster recovery scenario:

find and remove a dangerous object in presence

of obstacles.

Ensembles of cooperative vehicles

for providing a user with a seamless daily travel

plan, a sequence of destinations with possibly

different travel modes and resource

requirements

Nikola Ġerbedģija, 22

Ensembles Building

ÁEnsemble can be made
of same service
component types with
common goal

ÁEnsemble can be made
of different service
component types with
matching goals

Goals can be defined by
any function or predicate

Nikola Ġerbedģija, 23

Symbol SC: Service
Component

Knowledge Goals

Obstacles/

bricks
Dimension, shape, weight Protecting shape

construction

robots with

a grip

Movements, grip

capabilities, battery state

Cary the object for one to

another location

Targets Location, weight, shape Movement

foraging

robots

Movements, battery state Finding objects,

Information propagation

Swarm Robotics

Nikola Ġerbedģija, 24

Symbol SC: Service
Component

Knwledge Goals

User

applications

the requests for execution

(in terms of CPU, minimal

space, etc.).

Efficient execution.

Remote

computer

CPUs

processing capabilities

and a current utilization

Optimal utilisation

Local memory
Capacity, current

occupacy

Balanced use

Local

application

services

available appis at the local

computer

Appies ñadvertisingò

Cloud computing

Nikola Ġerbedģija, 25

Symbol SC: Service
Component

Knwledge Goals

Users

Route plan to reach different places
in a given time.

E-vehicles

occupancy and

the battery state

to serve users plans,

optimize energy
consumption

Charging stations Capacity/

Reservation plan

optimize its use (high
throughput)

Park places Capacity/

Reservation plan

optimize its use

E-mobility

Nikola Ġerbedģija, 26

III Modeling Examples (Ensembles)

E-Mobility

ÅA user, 2 vehicles, 1

charging station and 3

parklaces

Å3 vehicles that are available

for sharing

Å3 users ready to share

vehicles

Å4 basic service

components: users,

vehicles, charging stations

and park places

 Cloud Computing

ÅA user application, 2 remote

computers, with local memory

of appropriate size and for

supporting apples.

Å3 remote computers

Å3 different applications with

similar processing and

memory requirements

Å4 basic service components:

users applications, remote

CPUs, local memory and appis

Swarm Robotics

ÅA task: one obstacle, two

robots, one target and three

foraging robots

Å3 free robots with a grip

Å3 obstacles to be removed

Å4 basic service components:

obstacles, robots with a grip,

targets, foraging robots

Nikola Ġerbedģija, 27

ÅA set of programming abstractions that permit to directly represent
behaviors, knowledge and aggregations according to specic
policies, and to support programming self- and context-awareness,
and adaptation.

ÅThe main novelty of the language is the way sets of partners are
selected for interaction. The single component has the possibility
of directly identifying the partners of a communication but can also
select them by exploiting the notion of attribute-based
communication.

ÅEnsembles are formed according to predicates over interfaces'
attributes, representing specific properties, like spatial coordinates
or group memberships, and properties that they can guarantee like
security, trust level or response time.

III SCEL: Modeling language

Nikola Ġerbedģija, 28

III SCEL: Modeling language (cont.)

ÁBehaviors describe how
computations progress.

ÁInterface provides a set of
attributes characterising the
component itself

ÁKnowledge is represented
through items containing either
application data or awareness
data

ÁPolicies control and adapt the
actions of the different
components in order to
guarantee achievement of
specific goals or satisfaction of
specific properties

ÁAttribute based communication

ÅEnsembles are formed according

 to predicates over attributes

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, ñSCEL: a

language for autonomic computingò, Technical Report,.

Nikola Ġerbedģija, 29

ÁSystems: S ::= C | S1 ớ S2 | (ɜn)S

ÁComponents: C ::= Ƚ[Ⱦ,Ø,P]

ÁProcesses: P ::= nil | ʘ.P | P1 + P2 | P1[P2] | X | A(p)

ÁActions: a ::= get(T)@c | qry(T)@c | put(t)@c | new(Ƚ,Ⱦ,Ø,P)

ÁTargets: c ::= n | x| self | P | Ƚ.p

ÁTo execute SCEL programs, the jRESP framework has been developed.
This is a Java runtime environment providing means to develop
autonomic and adaptive systems programmed in SCEL [*].

 M. Loreti. jRESP: a run-time environment for scel programs.

 Technical Report (September 2012) http://rap.dsi.unifi.it/scel/.

III SCEL Syntax

Nikola Ġerbedģija, 30

SCEL Processes

 P ::= nil | ʘ.P | P1 + P2 | P1[P2] | X | A(p)

Processes are the active computational units. Each process is built up
from the inert process nil via action prefixing (a.P), nondeterministic
choice (P1 + P2), controlled composition (P1[P2]), process variable (X),
and parameterized process invocation A(p).

The construct P1[P2] abstracts the various forms

Áof parallel composition commonly used in process calculi. Process
variables can support higher-order communication, namely the capability
to exchange (the code of) a process, and possibly execute it, by first
adding an item containing the process to a knowledge repository and
then retrieving/withdrawing this item while binding the process to a
process variable.

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, ñSCEL: a

language for autonomic computingò, Technical Report,.

Nikola Ġerbedģija, 31

SCEL Actions

ÁActions and targets. Processes can perform five different kinds of
actions:

Å get(T)@c, qry(T)@c and put(t)@c

are used to manage shared knowledge repositories by withdrawing/retrieving/
adding information items from/to the knowledge repository c. These actions
exploit templates T as patterns to select knowledge items t in the repositories.
They heavily rely on the used knowledge repository and are implemented by
invoking the handling operations it provides.

Åfresh(n)

introduces a scope restriction for the name n so that this name is guaranteed to
be fresh, i.e. different from any other name previously used.

Ånew(IȽ[Ⱦ,Ø,P])

creates a new component Ƚ[Ⱦ,Ø,P]

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, ñSCEL: a

language for autonomic computingò, Technical Report,.

Nikola Ġerbedģija, 32

SCEL Targets

c ::= n | x| self | P | Ƚ.p

Different entities may be used as the target c of an action. Component

names are denoted by n, n0, . . . , while variables for names are denoted

by x, x0,

The distinguished variable self can be used by processes to refer to the

name of the component hosting them.

The target can also be a predicate P or the name p of a predicate exposed

as an attribute in the interface I of the component that may dynamically

change.

A predicate could be a boolean-valued expression obtained by applying

standard boolean operators to the results returned by the evaluation of

relations between attributes and expressions.

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, ñSCEL: a

language for autonomic computingò, Technical Report,.

Nikola Ġerbedģija, 33

SCEL Systems and Components

ÁSystems aggregate components through the composition
operator . It is also possible to restrict the scope of a
name, say n, by using the name restriction operator (vn)_ .

ÁThus, in a system of the form , the effect of the
operator is to make name n invisible within S1.

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, ñSCEL: a

language for autonomic computingò, Technical Report,.

Nikola Ġerbedģija, 34

Building Ensembles

ÁThus, actions put(t)@n and put(t)@P give rise to two different primitive forms
of communication: the former is a point-to-point communication, while the
latter is a sort of group-oriented communication.

ÁThe set of components satisfying a given predicate P used as the target of a
communication action can be considered as the ensemble with which the
process performing the action intends to interact.

ÁFor example, the names of the components that can be members of an
ensemble can be fixed via the predicate

Á

Á

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, ñSCEL: a

language for autonomic computingò, Technical Report,.

Nikola Ġerbedģija, 35

SCEL Modeling Example: Swarm Robotics

Å Francesco Mondada, EPFL,

Å Carlo Pinciroli, ULB

Nikola Ġerbedģija, 36

Actual Robots

Foraging robots Robots with a grip

Nikola Ġerbedģija, 37

SCEL Example

Each robot is rendered in SCEL as a component where
the managed element ME is as follows:

Á

This process retrieves from the knowledge repository the process
implementing the current control step and bounds it to a variable X, executes
the retrieved process and waits until it terminates.

ÁThe autonomic manager AM is defined as follows:

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, ñSCEL: a

language for autonomic computingò, Technical Report,.

Nikola Ġerbedģija, 38

jRESP Framework for SCEL

Nikola Ġerbedģija, 39

SCEL: Complete Robot Scenario

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, ñSCEL: a

language for autonomic computingò, Technical Report,.

Nikola Ġerbedģija, 40

jRESP: Implemengationm of Robot Scenario

Nikola Ġerbedģija, 41

SCEL: E-Mobility Example

ÁComponents and their interactions

ÁTravel desires of drivers

ÁIndividual EVs and EV fleets

ÁTraffic and road network

ÁCharging and energy network

Challenges

ÁIntelligent knowledge distribution

ÁPredicting e-vehicle travel time and
energy

ÁTravel planning

