

Research Challenges for Smart Information Systems

Wolfgang Leister

SMART 2012 Stuttgart

The handouts for "Research Challenges for Smart Information Systems" by Dr. Wolfgang Leister are considered a collection licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The parts of this collection may be licensed differently, as noted.

Facts about NR

- Applied research
- Financed by
 - Domestic private companies
 - Public sector
 - The Research Council of Norway
 - EU Research Programmes
 - International companies
- Established in 1952
- ▶ 60 research scientists
- ► Turnover 12 M€

Object orientation and SIMULA

www.nr.no

Main Research Areas

- Information and communication technology (ICT)
 - Information Security
 - E-Inclusion
 - Quality of Experience / Smart Information Systems
- Statistical-mathematical analysis and modeling
 - Oil/Gas and natural resources
 - Health Care
 - Financial

Smart Information Systems

Usability & Universal Design	Systems & Media	Security
	Health & Welfare	
	IoT & Mobility	
	Societal Challenges	
Environment, Climate, Energy, public services		
	Social Networks	
Digital Libraries and Digital Dissemination		
Open Inno	vation and Emerging Ted	hnologies

www.nr.no

Smart Information Systems

- Increase quality with respect to resources or experience.
- Metrics: time, money, work, energy, transmission capacity, storage capacity, etc.
- ► User experience (UX) → satisfied users
- Autonomous and adaptive

Smart Information Systems

tele-presence, 3D representations, smart house, smart-health, smart metering, smart grid, smart city, open data, open source, adaptive systems, ubiquitous, sensor network, ...

www.nr.no

User Experience – UX

- ► Quality of Experience (QoE)
- a subjective measure of a customer's experiences with a service or system
- Without QoE → system will not be used
- Usability
- User experience
- Universal design

User Experience – UX

... the way a person feels about using a product, system or service.

... highlights the experiential, affective, meaningful and valuable aspects of human-computer interaction and product ownership

... includes a person's perceptions of the practical aspects such as utility, ease of use and efficiency of the system.

News application – Interactive Mobile News (2000)

- Stretchable Streaming for lowbandwidth network (GSM)
- Multimedia with animated news reader
- Presented at Telekom 1999 and CeBit 2000 Expositions

www.nr.no

Norsk Regnesentral

ADIMUS architecture & QoE

Virtual Reality + Gaming

- ► Entertainment
- ► Architecture
- Museums
- Market Research

Example taken from VR project with Kon-Tiki Museum, Oslo

Path Tracker Tool

- Hot spots
- ► Traversal direction
- ► Time spent in different areas
- ► Direction of gaze/attention
- Which items were picked up/examined (even if not purchased)
- Which product location generated a particular purchase

ICT-based Exams

ICT-based Exams

The Internet of Things

The Internet of
Things (IoT) connects
a large number of
communication and
information systems
to support and
simplify everyday life
by means of
technology.

Health Care ...

Holzschnitt aus Hans von Gersdorffs "Feldbuch der Wundarzney" (1517) Behandlung einer Schädelwunde. Zugeschriebener Künstler: Hans Wechtlin en: Hans von Gersdorff (surgeon) Fieldbook of medicine (1517). Treatment of a skull injury, Wood cut work attributed to Hans Wechtlin.

www.nr.no

MPEG-21 for **Biomedical Sensor Networks**

- Nationally Norwegian funded research project
- Deployment of Patient Monitoring Systems with emphasis on Biomedical Sensor Networks

The loT in Health Care!

Help for Self-Management

What is Health Care?

- Types of health care:
 - Hospitals
 - Primary Care / Doctors
 - Paramedic / Ambulance
 - Care (re-convalescent, elderly home or institutions)
 - Chronic diseases
- Stakeholders:
 - Patient,
 - Relatives,
 - Nurses, Medical Personnel,
 - Pharmacies,
 - Service Owners,

www.nr.no

Value chain: IoT in health care

Structuring Personal Health

www.nr.no

Patient Monitoring System with Biomedical Sensor Network

Security Goals

ua = unauthorised actor(s)
pd = patient data

- (1) Confidentiality: personally identifiable pd not disclosed to ua.
- (2) Integrity: ua cannot modify or insert data.
- (3) Origin authentication: identify origin of action (create, write, read, delete) performed on pd.
- (4) Availability: access possible at any time for authorised actors
- (5) Patient identification: patient to whom data pertains is identifiable
- (6) Documentation: constraints (battery lifetime, geographic area, etc) specified; where delivery of pd guaranteed.
- (7) Patient notification: kind and purpose.

www.nr.no

Generic threats and consequences

- Compromised/fake component
- Destroyed, malfunctioning, lost, stolen component
- Software errors
- Misuse of emergency access
- Denial of service attacks
- Compromised/fake communication infrastructure
- Unstable communication infrastructure
- Eavesdropping

- Unavailability
- Incorrect information
- Sensitive information leaked (Disclosure)
- Damages (patient, operator, equipment)

Why must the IoT be secured?

- Control traffic attacks
 - Routing attacks
- ► Forwarding attacks
 - Spoofed, altered, replayed, selective forwarding, blackhole, sinkhole, sybil, wormhole, ...
- Countermeasures exist,
- Adaptive security

- Which data to which patient? (integrity)
- ► Alteration (integrity)
- Injection of messages
- Eavesdropping
- DoS (attacks)

www.nr.no

Securing the Application Layer with MPEG-21

BiM encoding a µMDI <!--DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS" xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS"> <Container id="test"> < tem id="myitem"> <Descriptor> <Statement mimeType="text/xml"> Container id=test <dii:Identifier>urn:grid:a1-abcde-9873216540-f</dii:Identifier> </Statement> /Descriptor> Item myitem <Descriptor> <Statement mimeType="text/xml"> <dii:Type>urn:sensor:bloodpressure</dii:Type> Item bloodpressure Descriptor </Descriptor> < tem id="bloodpressure"> Statement Comp diastolic Comp systolic <Component id="systolic"> <Resource mimeType="text/plain">160</Resource> </Component> Id Resource 160 Resource 80 <Component id="diastolic"> <Resource mimeType="text/plain">80</Resource> </Component> </ltem>

Would you trust this vision of the loT in health care ?

www.nr.no

</Container></DIDL-->

Norsk Regnesentral

Trust

- Particular level of the subjective probability with which an agent assesses that another agent [...] will perform a particular action ...
- ► Distrust no trust blind trust = [-1,0,1]
- Types of Trust:
 - Behavioural Trust game theory, stakeholders, ...
 - Computational Trust devices, channels, ...
 - Technical Trust trust chains, ...

www.nr.no

Smart House, Smart Health, Smart Office, Smart ...

Smart House, Smart Health, Smart ...

www.nr.no

Using VoIP is smart ...

Attacker: Ivory (I) SIP User Agent SIP Server Bob (B) Attacker: Frank (F) SIP User Agent SIP User Agent Novite No

How to analyse such systems? Configurations Attacks t Model Spe Requireme nts System Instance Secur y Targets rmal Verification Formal Verification Testbed-systems Requirements Protocol Analysis - Attacks Profiles - Security Models Configurations

www.nr.no

Modelling and Formal Methods

Trust - Security - Privacy - ... Law Trust Definition Knowledge Trust ** **Trust Metrics** Culture 🖁 Education Threats ? Environment Attitude Check list Usability Security § Formal analysis Human Factors Universal Design Threats ? User Experience (UX) Smart Information Systems System needs to forget 🦻 Malfunction Consent Extreme conditions Functionality § Privacy 6 Revocation System Complexity Notification System needs to remember Threats ? Norsk Regnesentral www.nr.no

Smart Information Systems

- Inform the User
- Think User Experience
- ▶ Think Trust
- Think Usability
- Think Universal Design
- Think Privacy
- Think Security

