
Protocol Awareness:
A Step Towards Smarter Sensors

Hoel Iris, Francois Pacull

CEA-LETI MINATEC Campus, France

Francois.Pacull@cea.fr

mailto:Francois.Pacull@cea.fr

 2

Context

Sensor

Actuator Gateway

Gateway

Sensor

Sensor

Actuator

Micro-controller

Physical
sensor/actuator

Radio

Battery

Building Automation Systems

Communication reliability
Energy consumption
Coordinated actions

 3

Context

Sensor

Actuator Gateway

Gateway

Sensor

Sensor

Actuator

Most of the communications
ensure only a best effort

Communication reliability
Energy consumption
Coordinated actions

 4

Context

Communication reliability
Energy consumption
Coordinated actions

Sensing rate is under the
responsibility of the sensors

Sensor

Actuator Gateway

Gateway

Sensor

Sensor

Actuator

Sent

Really required

 5

Context

Sensor

Actuator Gateway

Gateway

Sensor

Sensor

Actuator

Communication reliability
Energy consumption
Coordinated actions

Difficult to ensure the
performance of a group of actions

 6

Outline of the presentation

The high level
coordination protocol

we rely on

How we make the sensors
aware of this protocol

2 examples
as illustration

 7

Middleware / coordination protocol

Associative
Memory

Database record
(field1, field2, field3)

Event
(evenid, type, tm, payload)

Service
(in1, in2, out1, out2, out3)

Sensor
(id, type, value)

Actuator
(id, cmd, p1, p2, p3)

Rd()

Put()
Get() Production

Rules

Precondition
based on the Rd()

“ when these conditions are reached
I would trigger something”

Performance
To verify the Rd() are still valid
To consult some resources Rd()
To consume some resources Get()
To produce some resources Put()

Distributed
Transactions

Rd(), Get() and Put() operations
are performed as a sequence of transactions

{ … } { … } { ….}

 each of the transaction into
 curly bracket enforces all-or-nothing

 8

Protocol aware sensor
The Rd(), Get() and Put()

are embedded in transactions

Sensor

Actuator

Put()
Coordinator

Rd()
 Get()

Gateway

Gateway

Communication Protocol

Sensor

Actuator

Put()

Rd()
 Get()

Gateway

Gateway

Coordination protocol
over Communication Protocol

Coordination protocol

Initial approach

New approach

 9

Example of transaction
committed

Coordinator
bag1.rd()

bag2.get()

bag3.put()

bag4.put()

ok
ok

ok
ok

done

 10

Example of transaction
cancelled (processing)

Coordinator
bag1.rd()

bag2.get()

bag3.put()

bag4.put()

ok
nok

ok
ok

done

 11

Example of transaction
cancelled (failure)

Coordinator
bag1.rd()

bag2.get()

bag3.put()

bag4.put()

ok
ok

ok

done

 12

Platforms

OpenPicus Flyport + integrated Wifi (802.11 b/g/n)

16bits micro-controleur, 32MHz, 256Ko Flash, 16Ko Ram

26 I/O

Wifi (802.11 b/g/n)

Arduino - Xbee (802.15.4)

8bits micro-controleur, 8MHz, 32Ko Flash, 2Ko Ram

20 I/O

Xbee (802.15.4)

Micro-controller

Physical
sensor/actuator

Radio

Battery

 13

Micro-controller

Radio

Battery

Wake up

Physical
sensor

Boards can be put in sleep mode
 - communication
 - micro-controller
Boards can be wake up by external events
 - e.g. I/O pin set to high level

open-contact
e.g. Detect the opening of a door

Signal from application to signal
that we need to talk to the micro controller

Same mechanism to wake up the micro controller only
 when the physical sensor has something useful to say
 when the application needs to interrogate the sensor

 14

Micro
controller

Radio

Battery

Wake up (current state)

Physical
sensor

Signal from application to warn that
we need to talk to the micro controller

Several possibilities
 low cost wireless signal
 passive RFID
 infrared,
 …

This is out the scope of this paper and
let to further investigation

We used infrared because it was the simpler

Coordinator

 15

Coordination Protocol
Precondition (not transactional)

Rd ()
Interrogation of the sensor

(immediate reading)

Coordinator Smart sensor Physical sensor

reply

 16

Coordination Protocol
Performance (transactional)

op ()
Verification that the operation

can be actually performed

Performance

or release initial state

Coordinator Smart sensor Physical

sensor or actuator

ok/nok

done

 17

Coordination Protocol
Get()

Get () Is (a,b,c) still valid ?

 if no return “nok”

 if yes

 Is (a,b,c) locked ?

 if no, lock it and return “ok”

 if yes return “retry”

Coordinator Smart sensor Physical sensor

ok/nok/retry

done

If commit

 remove (a,b,c), return “done”

If abort

 release lock, return “done”

 18

Coordination Protocol
Put ()

Put ()
Verification that the operation

can be actually performed

Performance or

Release initial state

Coordinator Smart sensor Physical Actuator

ok/nok

done

 19

Main interests

Precondition phase:
Interrogate the sensor only
when needed by the application

  impact on the power consumption

Performance phase:
Verify that the command sent to an actuator is physically possible

  ease the management of group of actuators

 20

Example 1

Algorithm using temperature sensors where the interrogation of the
sensors is not predictable but relies on computation done by the
previously read values.
e.g. accelerate the pace when temperature delta increases quickly

Classical approach
The sensor send the
temperature every 5 minutes

24*12 = 288 measures

Application driven approach
The application interrogates the sensor
when required

let say that 50 measures are enough

AM

PM

AM

PM

 21

Example 1

Micro + Radio classical Application driven

Flyport + Wifi 0,33% 0,058%

Arduino + Xbee 0,0133% 0,00231%

Micro + Radio Idle running wakeup + request + sleep

Flyport + Wifi 97µA 127.5mA 1s

Arduino + Xbee 206µA 57.1mA 0,04s

Micro + Radio classical App. driven

Flyport + Wifi 105 days 328 days

Arduino + Xbee 253 days 261 days

Cons = R CRunning + (1 – R) Cidle

Running Time
Total Time

R =

Autonomy = Cons / 1300µAh

More important to save on idle state than on running state

Costly but simpler to deploy wireless protocol is affordable

Sleeping
94,2% of the time

99,769 % of the time

In our example

 22

Example 2
We want to coordinate 2 servo-motors
such that their combined moves
allow to turn from 0 to 360 degrees while
they can only turn 180 degrees each.

Transaction will fail if servo-motor
receive out of range order

[ʺApplicationʺ, ʺAngleʺ].rd(angle) &

::

{

 [ʺApplicationʺ, ʺAngleʺ].get(angle) ;

 [ʺFlyportʺ, ʺActuatorʺ].put(ʺpositionʺ, angle) ;

 [ʺArduinoʺ, ʺActuatorʺ].put(ʺpositionʺ, ʺ180ʺ) ;

}

{

 [ʺApplicationʺ, ʺAngleʺ].get(angle) ;

 [ʺFlyportʺ, ʺActuatorʺ].put(ʺpositionʺ, ʺ180ʺ) ;

 [ʺArduinoʺ, ʺActuatorʺ].put(ʺpositionʺ, angle) ;

}.

Arduino Flyport

0 360

180 180

Fail if angle not in 0-180

Fail if angle not in 180-360

Fail if angle not available

 23

Example 2

[ʺApplicationʺ, ʺAngleʺ].rd(ʺ70ʺ) &

::

{

 [ʺApplicationʺ, ʺAngleʺ].get(ʺ70ʺ) ;

 [ʺFlyportʺ, ʺActuatorʺ].put(ʺpositionʺ, ʺ70ʺ) ;

 [ʺArduinoʺ, ʺActuatorʺ].put(ʺpositionʺ, ʺ180ʺ) ;

}

{

 [ʺApplicationʺ, ʺAngleʺ].get(angle) ;

 [ʺFlyportʺ, ʺActuatorʺ].put(ʺpositionʺ, ʺ180ʺ) ;

 [ʺArduinoʺ, ʺActuatorʺ].put(ʺpositionʺ, ʺ70ʺ) ;

}.

Arduino Flyport

0 360

180 180

Arduino Flyport

0 360

180 180

[ʺApplicationʺ, ʺAngleʺ].rd(ʺ270ʺ) &

::

{

 [ʺApplicationʺ, ʺAngleʺ].get(ʺ270ʺ) ;

 [ʺFlyportʺ, ʺActuatorʺ].put(ʺpositionʺ, ʺ270ʺ) ;

 [ʺArduinoʺ, ʺActuatorʺ].put(ʺpositionʺ, ʺ180ʺ) ;

}

{

 [ʺApplicationʺ, ʺAngleʺ].get(angle) ;

 [ʺFlyportʺ, ʺActuatorʺ].put(ʺpositionʺ, ʺ180ʺ) ;

 [ʺArduinoʺ, ʺActuatorʺ].put(ʺpositionʺ, ʺ270ʺ) ;

}.

angle = 70°

angle = 270°

 24

Conclusion

 High level coordination protocol on micro-controllers

 Better usage of application knowledge has a significant
impact of the consumption.
 Saving on running mode is not enough

 “more costly” wireless protocol, easier to deploy is not always a bad idea.

 Embedded distributed actions into transaction
 Use the 1st phase to verify the action is actually possible

 Ensure all-or-nothing property

sensors can be stupid but
 they need to be disciplined

 25

Future work

 Work on the wake up signal
Involve other teams of CEA-Leti

 More complex scenario
 Abandoned sensors

First sensor waked up by alarm, others sensors by application)
(we are not very far from our 1st example)

 Robot with motorized camera
Tracking an object by moving either the camera or the robot
But the camera can be at the end of the range and the robot blocked by
an obstacle.
(we are not very far from our 2nd example)

