

Josef Noll, Sarfraz Alam, Zahid Iqbal, Mohammad M. R. Chowdhury Prof. at University of Oslo/UNIK Member of CWI Norway josef@unik.no

Outline

- About the author
- Security in Mobile Network
 - Privacy
 - Dependability
- The way ahead: Internet of Things
 - connection of sensors to mobile
 - business decisions based on information
- Security Challenges
 - BYOD "bring your own device"
 - Be aware of the value of information
 - Measurable security
- Use case for
 - From Entertainment to Socialtainment
 - Sensor data fusion
- Conclusions

Security, Privacy and Dependability in Mobile Networks

Chip designer at SIEMENS

Center for Wireless Innovation

A facilitator for industry and seven research institutions to form strategic partnerships in wireless R&D

MONTION Innovation through Collaboration

Providing the infrastructure for open collaboration

Outline

- About the author
- Security in Mobile Networks
 - Privacy
 - Dependability
- The way ahead: Internet of Things
 - connection of sensors to mobile
 - business decisions based on information
- Security Challenges
 - BYOD "bring your own device"
 - Be aware of the value of information
 - Measurable security
- Use case for
 - From Entertainment to Socialtainment
 - Sensor data fusion
- Conclusions

Generations of Mobile Networks

Service view

[adapted from Per Hjalmar Lehne, Telenor, 2000]

UIK

Security, Privacy and Dependability in Mobile Networks

Oct 2012, Josef Noll

Generations of Mobile Networks

[adapted from Per Hjalmar Lehne, Telenor, 2000]

Security, Privacy and Dependability in Mobile Networks

Oct 2012, Josef Noll

Security in Mobile Networks

- NMT
 - tap the line
- GSM
 - No authentication of network: IMSI catcher pretend to be BTS and request IMSI
 - Undisclosed crypto algorithms
- UMTS
 - adds integrity and freshness checks on signalling data from network to MS
 - forced attack to 2G
- LTE
 - full IP security package
 - heterogeneous access networks

[Source: Lars Strand: "Security Architecture for Mobile Telephony Systems", PhD presentation, UiO, 2011]] Security, Privacy and Dependability in Mobile Networks Oct 2012, Josef Noll **7**

Threats/attacks	Security services	Security mechanisms
GSM		
Cloning	Authentication	Authentication mechanism (challenge-response with a shared secret)
Eavesdropping (voice sent in clear)	Confidentiality	Encryption of call content (A5/1, A5/2, A5/3)
Spying (identity tracking)	Confidentiality	Location security (TMSI)

CV

Norw:

		Threats/attacks	Security services	Security mechanisms
Threats/attacks	Security services		Security mechanisms	
UMTS				
False BST	Authentication		Mutual authentic (challenge-respo shared secret)	ation mechanism nse with a
Eavesdropping (Poor GSM encryption)	Confidentiality		Encryption of sig content	naling and call
Data sent in clear in the operator network	Confidentiality		Encryption and ir of data, to also c network	ntegrity protection over operator

CW

Norwa

LTE		Threats/attacks	Security services	Security mechanisms
Threats/attacks	Security s	ervices	Security r	nechanisms
Eavesdropping	Data confident	iality	IPSec	
Modification of content	Data integrity		IPSec	
F Impersonation	Authentication		EAP-AKA	
Denial of service, roaming, performance	Availability ser	vice	fast re-authen different acce	

CW

Norwa

			Threats/attacks	Security services	Security mechanisms
			GSM		
			Cloning	Authentication	Authentication mechanism (challenge-response with a shared secret)
			Eavesdropping (voice sent in clear)	Confidentiality	Encryption of call content (A5/1, A5/2, A5/3)
			Spying (identity tracking)	Confidentiality	Location security (TMSI)
Threats/attacks	Security services	Security mechanisms			
UMTS					
False BST	Authentication	Mutual authentication mechanism (challenge-response with a shared secret)			
Eavesdropping (Poor GSM encryption)	Confidentiality	Encryption of signaling and call content			
		Encryption and integrity protection	LTE		
Data sent in clear in the operator network	Confidentiality	of data, to also cover operator network	Threats/attacks	Security services	Security mechanisms
			Eavesdropping	Data confidentiality	IPSec
			Modification of content	Data integrity	IPSec
			Impersonation	Authentication	EAP-AKA
			Denial of service, roaming, performance	Availability service	fast re-authentication? different access network?

[adopted from: Lars Strand: "Security Architecture for Mobile Telephony Systems", PhD presentation, UiO, 2011]] Security, Privacy and Dependability in Mobile Networks Oct 2012, Josef Noll 8

CV

Norw

Security in Mobile Networks

- CWI
- Main focus so far on accountability (for billing)
- End-to-end encryption is a challenge
 - Interoperability: variety of access networks, coding
 - key handling in TLS
 - application specific solutions: SIP
- Privacy
 - personal privacy
 - business value privacy
- Dependability, reliability
 - infrastructures
 - systems of systems

[Source: Lars Strand: "Security Architecture for Mobile Telephony Systems", PhD presentation, UiO, 2011]]

Physical vs Organisational privacy

- don't touch me
- don't invade
- preferences
- locations

Physical vs Organisational privacy

Norway

- don't touch me
- don't invade
- preferences
- locations

What is in Coca Cola?
When will VW launch the new Golf?

Value of Information

 Access to fingerprints of all people

Protecting the identity?

- CWI
- 8 million US residents victims of identity theft in 2006 (4% of adults)
- US total (known) cost of identity theft was \$49 billion
 - ~10% was paid by customers
 - remaining by merchants and financial institutions
- Average victim spent \$531 and 25 hours to repair for damages Source: Lasse Øverlier & California Office of Privacy Protection
- ID tyveri på sekunder Stjeler identiteter på få sekunder

ID theft in seconds http://itpro.no/art/11501.html

Det tar kun få sekunder å stjele en annen persons identitet. Ved hjelp av et navn, et fødselsnummer og et program kan uvedkommende bruke din identitet

Outline

- About the author
- Security in Mobile Networks
 - Privacy
 - Dependability
- The way ahead: Internet of Things
 - connection of sensors to mobile
 - business decisions based on information
- Security Challenges
 - BYOD "bring your own device"
 - Be aware of the value of information
 - Measurable security
- Use case for
 - From Entertainment to Socialtainment
 - Sensor data fusion
- Conclusions

Security, Privacy and Dependability in Mobile Networks

IoT paradigm

- The present "Internet of PCs" will move towards an "Internet of Things" in which 50 to 100 billion devices will be connected to the Internet by 2020. [CERP-IoT, 03.2010]
- "We are entering a new paradigm where things have their own identity and enter into dialogue with both other things and humans mediated through processes that are being formed today. [IoT Europe 2010 conf., 06.2010]

Principal Objective of the FI PPP - A Holistic Global Service Delivery Platform

The IoT technology and application domain

CW

Outline

- About the author
- Security in Mobile Networks
 - Privacy
 - Dependability
- The way ahead: Internet of Things
 - connection of sensors to mobile
 - business decisions based on information
- Security Challenges
 - BYOD "bring your own device"
 - Be aware of the value of information
 - Measurable security
- Use case for
 - From Entertainment to Socialtainment
 - Sensor data fusion
- Conclusions

The security challenge of the Internet

Source: http://www.michaelkaul.de/History/history.html

Security, Privacy and Dependability in Mobile Networks

CW

Fig. 1. "Internet of Things" paradigm as a result of the convergence of different visions. Security, Privac, and Dependability in No. .. ie Networks

Fig. 1. "Internet of Things" paradigm as a result of the convergence of different visions. Security, Privac, and Dependability in No. .. ie Networks

Security challenges

CW

Measurable Security

- Value of information
 - Identify
 - Analyse
 - Evaluate Risk
- Measurable security
 - "Banks are secure"
 - IETF working group: Better than nothing security
 - Cardinal numbers?

Risk Analysis E Assessment

Security Challenges in sensorenabled clouds

- Security, here
 - security (S)
 - privacy (P)
 - dependability (D)
- across the value chain
 - from sensors to services
- measurable security?

Measuring Security, Privacy and Dependability (SPD) in the IoT

Ontology logical representation: each concept is modelled and the relations are identified in order to have the logical chains that enables the SPD-aware composability

Outline

- About the author
- Security in Mobile Networks
 - Privacy
 - Dependability
- The way ahead: Internet of Things
 - connection of sensors to mobile
 - business decisions based on information
- Security Challenges
 - BYOD "bring your own device"
 - Be aware of the value of information
 - Measurable security
- Use case for
 - From Entertainment to Socialtainment
 - Sensor data fusion
- Conclusions

Use case: SPD in heterogeneous systems

- Nano-Micro-Personal-M2M Platform
 - identity, cryptography, dependability
- SPD levels through overlay functionality
 - answering threat level
 - composing services
- Policy-based management
 - composable security
- Integration into Telecom Platform
 - from information to business decisions

Security, Privacy and Dependability in Moune remone

Application Example: Socialtainment (eMobility)

- From Entertainment to Socialtainment
- Social mobility through inclusion of social networks

m Ha 40 cm

 CO_2

UNIK

CO2 consumption

_{0/}6 %

25 %6 %

33 %

SAP 45% (2009)

Security, Privacy and Dependability in Mobile Networks

smart grid

Oct 2012, Josef Noll

Semantic Representation

Cloud service representation through semantic integration

Security, Privacy and Dependability in Mobile Networks

CW

The IoT ecosystem

- openness, competitive
- climate for innovation
- Public authorities
 - trust, confidence
 - demand
- Consumers
 - (early) adapters
 - education
- Infrastructure

UNIK

- broadband, mobile
- competition

Trust ?

CW

Security, Privacy and Dependability in Mobile Networks

Oct 2012, Josef Noll

Internet service usage

CW

Conclusions

- The mobile system is secure, but...
 - evolvement to provable security
 - bring your own devices, heterogeneity
 - from sensors to business decisions

• Building the IoT architecture

- Cross-layer intelligence & knowledge
- Accounting for security

Measurable security

- Metrics describing threats
- Overlay description for system of systems

Building the Ecosystem

- Human perspective: trust, privacy, context
- Security based on measures of components, attacks and human interaction

The world is wireless

My special thanks to

- JU Artemis and the Research Councils of the participating countries (IT, HE, PT, SL, **NO**, ES)
- Andrea Fiaschetti for the semantic middleware and ideas
- Inaki Eguia Elejabarrieta, Andrea Morgagni, Francesco Flammini, Renato Baldelli, Vincenzo Suraci for the Metrices
- Przemyslaw Osocha for running the pSHIELD project, Luigi Trono for running nSHIELD

- Sarfraz Alam (UNIK) and Geir Harald Ingvaldsen (JBV) for the train demo
- Zahid Iqbal and Mushfiq Chowdhury for the semantics
- and all those I have forgotten to mention

